
J. Plasma Fusion Res. SERIES, Yol.2 (1999) 54-57

Energy Release and Plasma Heating by Reconnective
Magnetic Relaxation

JAIN Rekha and VEKSTEIN Grigory

University of Manchester Institute of Science and Technology,

Manchester, M60 lQD, United Kingdom

(Received: 4 January 1999 I Accepted: 13 May 1999)

Abstract
A brief review of recent progress in the theory of magnetic energy release and dissipation via

magnetic reconnection is presented. The relaxation aspect of this process is emphasized, which is of
interest for astrophysical plasmas such as the solar corona.
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1. lntroduction
It is well known that magnetic reconnection, a

phenomenon associated with breaking and mending of
the magnetic field lines, plays an important role in
laboratory and space plasmas. In fusion-oriented devices

reconnection results in changes in the topology of
magnetic flux surfaces which can destroy plasma

confinement. For astrophysical plasma objects the

energy aspect of this process is essential, since

reconnection allows fast release of the excess magnetic

energy which maintains the hot solar corona Il] and

energizes extragalactic jets [2]. Usually, interaction of
the plasma with magnetic fields has a quite complicated

turbulent character. Therefore significant progress in its

understanding has been achieved not starting from the

first principles but by applying more general ideas of
relaxation in complex systems [3]. This theory, based on

magnetic reconnection as the relaxation mechanism, was

very successful in predicting magnetic configurations

sustained in various laboratory plasma systems. It was

also applied to the problem of plasma heating in the

corona and jets, though the related studies [4,5] were

only semi-phenomenological. This report presents a self-

consistent derivation of the energy release and plasma
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heating by forced magnetic reconnection [6,7]. The

latter means that reconnection is triggered by the current

sheet formed inside initially smooth magnetic field due

to its external perturbation. Such forced reconnection

seems to be a viable mechanism for solar coronal

heating, because current sheets are easily formed in the

corona by photospheric shuffling of magnetic footpoints

t8,el.

2. Magnetic Reconnection and Energy
Release

We are interested in a low-B plasma, hence we

consider a sheared force-free magnetic field

B, = {0, Bo sin osx, Bo cos 06.r} , (l)

embedded in a planar slab of a highly conducting
plasma with walls at x = ,t) = to. The initial
equilibrium is perturbed by deforming the right-hand

boundary.rl*) as

*{) = o - 6s cos lcy e- i't a)
thus making the magnetic configuration two
dimensional: periodic in the y direction but invariant
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along the z-axis. For quasistatic evolution (aru<< l; ru

is Alfven time-scale), a new equilibrium can be
represented with the deformed magnetic field (function
of r and y) as

B (x, y) = IY V (x,y) xi ] + B, (x, y) i, (3)

and this is a force-free field if the poloidal flux function
tg and toroidal field component 8. satisfy the Grad-
Shafranov equation

B,(x,t)=9(D; Y'W+9$-=0. (4)' "dut
In the linear approximation (do << a) it yields

V @, y) = Vo @) + t1f 1 (x) cos lq e-i',,
9 @)= 9oW), (5)

where tge(x) and go\trd relate to the initial magnetic
field (1). Thus, the perturbed flux function y1(_r)

satisfies the following equation

v'i+1.4-k'lv,=o. (6)

formed at the resonant surface. Obviously, such a
transformation cannot be realized in a perfectly
conducting medium for which magnetic reconnection is
prohibited. Therefore the solution for this case, denoted
ut V|, has the additional requirement ,fl'tro) = 0, i.e.

I
.' I o, -a3 x<vPG)=\ ^ qin",,_i,'-a>x="0(g)

I -Aasincrna'i"l:'-'.1 , xnsx<- a.
| " - - srnK(r-xo)
\

This solution, though preserving the field ropology, has

a singularity which is allowed in ideal MHD: the currenr
sheet at r = r0, where B, = dvl dx, is discontinuous. If a

finite plasma resistivity is present, it tries to destroy the
current sheet by reconnective transition from rg[0 to V/4.
This transition is also associated with the release of
magnetic energy [0], which, being related ro a unit
volume, is equal to

Bi /6. \'?
Lt'=____:_ l)l y1ap, ka, x), (9)

2iln\a l'
where

^ sin2a,g
J =----:-:KalcotK(a -xo)- cot2 Kal.-8

The dependence of / on the scale length fta of
perturbation is shown in Figure I for various values of
ArA.

3. Plasma Heating by Magnetic Relaxation
In this section we discuss the possibility of plasma

heating that can be provided if this forced reconnection
is continuously generated by the external perturbation
(2). In a plasma with finite resistivity a general
equilibrium configuration can be represented as a linear
superposition of the two equilibria derived in the
previous section

Vt=AV?+G-A)Wf\ (10)

Since the solution r4ft) is singular, its presence in (10)

means that the resulting equilibrium acquires a current
sheet whose strength can be characterized by the
parameter A'- thejump in the logarithmic derivative of
t/r at the resonance surface x = xo. It follows from (7)
and (8) that

A'- 2a cottca(1-A) (1 1)

(here -16 = 0 is assumed for simplicity). The particular
value of /'and hence of A is determined by the internal
structure of the current sheet where both inertial and

The solution of equation (6) subject to boundary
condition (2) is (for k. oo)

v,i'G)=- Bo4 sin d6a 
tt:;t"n;" 

.

a)
This solution is regular and contains nothing

special unless at some location x - .re within the slab
B tr(rd = 0, i.e. .r - -16 is the resonant surface where k'B ;

= 0. Since Vl"@d is, generally, non-zero, the new
equilibrium (5) has topology different from that of (l),
with magnetic islands of width A = 4(lrlr([\Gdl/a&ilrt2

I
(*.=o)

Fig. 1

a.6=3n/8

a,a=n/4

1.0
ka

The factor f {see Equation (9) plotted as a function
of ka for three different values of aoa i.e. aoa = rl
8, nl4 and 3nl8 lx6 = 0). Note that the magnitude
of f increases with increasing aoa but decreases
with increasing ka.

0.6o.4o.2 0.8

(4-k'\:
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resistive effects are essential. Therefore the situation is

similar to usual tearing stability analysis [1 l], although

in the tearing mode /'is prescribed by the global

magnetic configuration (the external solution), and then

the current sheet (the internal solution) determines the

instability growth rate whereas herc the perturbation

frequency al is fixed by (2), and so is the internal

solution; thus the external equilibrium (10) which is

specified by yet unknown amplitude A should adjust to

this cunent sheet. The plasma motion is incompressible

inside the current sheet i.e. v = IY Q @,y,t) x 2], where 0

= @(r) sin ky s-i'' is the stream function. Then the

magnetic induction equation and equation of motion can

be written there in the following dimensionless form:

(ar.ft| @+ib)= A 
,' t-A

l** y" ., 2ttf Ql4) y
ta+ib)= | ? o(=- 

'.*, "' 'i 
. (17)

| -. .- l''
r r< | aotantCz 

I

Here r, - tf,ts rfll5 lr;*^t,l is the effective_internal

reconnection time. It has usual tearing mode scaling [11]

with respect to fu and Tn, but it also depends on the

shear parameter d0, so that T, ) * when the initial

configuration (l) approaches the tearing instability

threshold Ka = 7t/2. The solution of (16) is

A= A t*iAt =

(ax,f t4(a2+ t 
{[, 

* ,r".f' 
o1o'+ 8l 

] 
. t, 

)
ut'i

-i(DVt=-ikxQ+ atr:
- a,10" + l<xV't =0,

( \U4Itl(=4-:-l .

\anik- J

la 
+ 1on,f 

tnla'* t ll' * t
(18)

equations (12) can be reduced to

X" -i('X,+i(=g . (14)

The appropriate solution of (14) which is an odd

function of ( and behaves as ll ( at ( -+ - to match the

external solution is

y(y=7,+i)(2

where T" =.fpolBoaois the Alfven time, zn = 14a2of is

the resistive time (tu<<cn) with.x scaled by asr. V/1 by

Bolas and Q by -ialfi. Adopting the constant-V/

approximation Il] and using new variables:

It shows that magnetic equilibrium is governed by the

parameter alr. which is the ratio of the internal

reconnection time z. to the time scale of the external

driver (2). In the limit of fast internal reconnection,

when rrr4 << l, A -r 0, i.e. the system is very close to the

reconnected equilibrium rd". In the opposite limit of
slow reconnection, ar, >> l, A -+ I and the ideal

equilibrium y[t) with strong current sheet is present. In

general case, when both r4ft) and r4[') contribute to the

equilibrium state, the amplitude A is a complex quantity.

This means a phase shift (temporal delay) between the

external driver and internal equilibrium, and it is this

delay that determines a continuous dissipation of
magnetic energy. A straightforward calculation of
energy dissipation rate per unit volume results in

AC
Q=* 9@tt,1; g@)r,)--ax,A2 (a1,), (19)

where Ad is the excess magnetic energy given by (9).

The function $(ar,), plotted in Figure 2, has its

maximum at oq - I and tends to zero as (rm,)eta for oJt,

<< I, and as (al,)-tta for ar, >> 1. In general, !}(aq)
shows features typical for a relaxation process when

dissipation is most effective for the external driver's

time-scale comparable to the internal relaxation time. It
also demonstrates explicitly that the faster reconnection,

i.e. shorter 2., does not necessarily result in an increased

heating. Though this is true for a)q > l, the dissipation

rate becomes decreasing with shorter z, when @q < l,
simply because too fast reconnection does not allow

build up of the excess magnetic energy (the amplitude A

of the current sheet is small).

*= r*-e=,(#)'^, 
(r3)

| ,,.
o,=J 

v'* 
= 

a'tl | {*r/r(0) kvt lo) J x

=?:I(*j"'[_ tot o6)
(klao\"'1ar;1 r-

(r2)

dp. (15)=#1,'".0{- \# ur'}

(l - tt')''o

Knowing the stream function @, one can use the second

of equations (12) to derive the current density inside the

current sheet, which yields ry'i = ff 0". Therefore

Equating (16) and (ll), the following equation

which determines the amplitude A is found:
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4. Conclusions
In this work, energy release and plasma heating by

forced magnetic reconnection is studied self-
consistently. The most interesting regime of
reconnective relaxation occurs when the system is
initially close to marginal tearing stability i.e. when as
approaches (ao).. (= trl2a for the above model). In this
case both Lt and Q become very large (and it follows
from (9), (16) and (18) that they scale as AC- [(ai",-
aol4,Q - [(ai", - aof-ttt ).

From a general physics point of view this plasma
heating by forced magnetic reconnection is analogous to
the well-known "second viscosity" phenomenon in
fluids [2]. In both cases relaxation processes result in
enhanced dissipation with a characteristic frequency
dispersion as in Figure 2.

aa.

Fig. 2 The relaxation function .7(orz.).

Acknowledgements
This work was supported by the UK Particle

Physics and Astronomy Research Council. One of us
(G.V.) is grateful to Prof. T. Sato, Prof. T. Hayashi and
Dr. T. Watanabe for their kind hospitality and
discussions of this work during his visit to the National
Institute for Fusion Science.

References
[] J. Heyvaerts and E.R. Priest, Astron. Astrophys.

r37, 63 (1984).

[2] A. Konigl and A.R. Choudhuri, Astrophys. J.289,
173 (198s).

[3] J.B. Taylor, Rev. Mod. Physics 58 (3),741 (1986).

[4] G.E. Vekstein, E.R. Priest and C.D.C. Steele.
Astrophys. J. 417, 781 (1993).

t5l G.E. Vekstein, Space Sci. Rev.68, t5 (1994).

[6] T. Sato and T. Hayashi, Phys. Fluids 22, tl89
(r979\.

t7l T.S. Hahm and R.M. Kulsrud, Phys. Fluids 28,
2412 (1985]..

[8] E.N. Parker, Astrophys. J.174,499 (1972).

t9l G.E. Vekstein et al, Astron. Astrophys. 243, 492
(1991).

t10l G.E. Vekstein and R. Jain, Phys. Plasmas 5, 1506
(1998).

t11l H.. Furth, J. Killeen and M.N. Rosenbluth, Phys.
Fluids 6 459 (196T.

[12] L.D. Landau and E.M. Lifshitz, Fluid Dynamics
(Butterworth - Heinemann, Oxford, 1987), Ch.8,
p.308

57




