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1. Introduction
Differences between axisymmetric and non-

axisymmetric toroidal systems come from whether

symmetry in the toroidal direction exists or not. In that

existence of the ignorable coordinate reduc.rs three-

dimensional problems into two-dimensional ones,

axisymmetric toroidal systems are regarded as

physically degenerate states of non-axisymmetric
toroidal systems. Thus, phenomena inherent to non-

axisymmetric toroidal systems exist together with many

common features to axisymmetric toroidal systems. In

this paper, we will concentrate our attention on the

differences between both systems, or phenomena

inherent to non-axisymmetric toroidal systems.

2. MHD Equilibrium and Particle Orbits
In axisymmetric toroidal systems, MHD equilibria

consist of clear nested flux surfaces and collisionless

single particle orbits have the invariant of motion. In

non-axisymmetric MHD equilibria, lack of the toroidal
symmetry leads to breaking up the flux surfaces into
magnetic islands, and to stochastic motion of particle

orbits. Thus, a kind of optimization of the non-

axisymmetric MHD equilibrium as was done in LHD
and W7-X is needed in order to avoid them as much as

possible. If such an optimization is not enough, then
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large size of magnetic islands and/or splitting of the

magnetic axis occur as pvalue increases, especially for
low magnetic shear systems. Although existence of
magnetic islands by themselves brings about profound

accademic and practical problems, we could still find
fruitful interesting differences between axisymmetric
and non-axisymmetric toroidal equilibria under the

assumption of clear nested flux surfaces. Under this

assumption, differences appears as the situation whether

equilibrium quantities depend on the toroidal angle or

not, when we use an appropriate magnetic coordinate

system such as the Boozer coordinates. In other word,

equilibrium quantities depend on not only poloidal but

also the toroidal Fourier modes in non-axsymmetric
toroidal systems. Hereafter, we consider L = 2 planar

axis heliotron configurations with good flux surfaces

like LHD, where Z is the polarity of helical coils.

3. Neoclassical Transport
The neoclassical transport is determined by particle

orbits under the Coulomb collision, which is expressed

in terms of so called flux-thermodynamic force

relationship. Since the lowest order distribution function
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is the local Maxwellian, two kinds of the
thermodynamic force appear for each particle species (if
no extemal field exists):

A ,,,.\ | dP"(v) da(v)
8.^, l rtt It'at\Y)- 

r,nJw W 
* 

drl, '

I dQ(tlt\4"2(Vt\=l-,
ea dv

where the standard notation is used, and @ and lrl are the
electrostatic potential and the label of the flux surface,
respectively. The lowest order mean flows and heat
fluxes are determined by the flux-surface averaged
perpendicular and parallel force balances for each
particle species. Both are incompressible ones on flux
surfaces. It are these lowest order quantities that
determine the same order bootstrap current and the next
order radial particle and heat fluxes. Differences ofboth
systems come from l) existence or non-existence of the
toroidal viscosity making a non-ambipolar radial flux,
and 2) the form of the parallel viscosity. In
axisymmetric toroidal systems with symmetry in the
toroidal direction, the toroidal viscosity disappears, so
that all the radial fluxes become intrinsically ambipolar.
It means that the ambipolar condition does not
determine the radial electric field d@/dry. Toroidal
symmetry ensures the conservation of the lowest order
total toroidal angular momentum, and hence only the
poloidal flow (flow in the direction without symmery)
is selectively damped by the parallel viscosity,
independent of the collisionality regime of each particle
species. The resultant poloidal flow has no component
due to the radial electric field, and only the toroidal flow
has such a component. The fact that an undetermined
radial electric field appear only on the toroidal flow is
consistent to the conservation of the total toroidal
angular momentum, because such a conserved quantity
should be determined from an appropreate initial
condition, and hence an appropreate unknown quantity
must be included there. Moreover, the bootstrap current
does not include the component directly proportional to
the radial electric field, inspite of the form of the
thermodynamic force A.r(V). Therefore, undetermined
radial electric field does nor influence the MHD
equilibria including the bootstrap current.

In non-axisymmetric toroidal systems, lack of the
toroidal symmetry leads to a non-ambipolar diffusion
due to the toroidal viscosity, which is inversely
proportional to the Coulomb collision frequency (l/v-
ripple diffusion). Thus, ambipolar condition determines
the radial electric field. Due to lack of toroidal
symmetry, the parallel viscosity damps not only poloidal

flow, but also toroidal flow, and the direction of
damping depends on the collisionality regime of each
particle species. Thus, both poloidal and toroidal flows
have a component proportional to the radial electric
field, and the bootstrap current has a component directly
proportional to the radial electric field, when electrons
and ions exist in the different collisionality regimes.
Consequently, the determinable radial electric field
directly influences MHD equilibria through the
bootstrap current in the non-axisymmetric toroidal
systems. This influence becomes significant when
electrons and ions exist in the llv and plateau
collisionality regimes, respectively. In this situation, the
radial electric field determined by the ambipolar
condition reduces the bootstrap current [1,2].

As is well known, the diamagnetic current and
Pfirsch-Schliiter current are independent of the radial
electric field in both systems, because that the
diamagnetic current is created by the local gyration
motion around a magnetic field line, and that pfirsch_

Schliiter current flows so as to satisfy incompressibility
of the current. In contrast, bootstrap current comes from
the global drift motion of the guiding center, which can
feel the global structure of the magnetic field
configuration, namely, symmetry and asymmetry.

4. ldeal MHD Spectrum and Instability
4.1 Shear Alfv6n continuum and spectral gaps

In one-dimensional systems such as straight
tokamaks with circular cross section, equilibrium
quantities describing shear Alfv6n branch are surface
quantities, which make shear Alfvdn continuum in the
stable side of the ideal MHD spectrum. In axisymmetric
(two-dimensional) toroidal systems, in which
equilibrium quantities have poloidal angle dependence,
this shear Alfv6n continuum has spectral gaps due to
poloidal mode couplings between equilibrium quantities
and perturbations. In non-axisymmetric (three-
dimensional) toroidal systems, equilibrium quantities
have both poloidal and toroidal angle dependences, and
hence the spectral gaps in the shear Alfvdn continuum
are created by both poloidal and toroidal mode
couplings. The behaviour of the shear Alfv6n continuum
is shown in Figs.l-(a) and (b), where an MHD
equilibrium in an L = 2/M = 8 planar axis heliotron
configuration is used (L and M are polarity and toroidal
field period of helical coils, respectively). In Fig.l-(a),
the shear Alfv6n spectrum with both poloidal and
toroidal mode couplings is shown where Fourier modes
are used satisfying n * nr - nM, n1 = 2, n = 0, +1, +2.
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(a) (b)

mode couplings, and (b) without mode coupling (dsahed
Fig. 1 Shear Altu6n spectrum (a) with poloidal and toroidal

lines) and with only poloidal mode coupling (stars).

..., namely, n = "', -10, -6, -2,2, 6, 10, " '. From these

figures, it is understood that the coexistence of poloidal

and toroidal mode couplings dramatically changes the

spectrum gap structure in the shear Alfv6n continuum.

Toroidicity-induced shear Alfv6n Eigenmodes (TAE)

are considered to change compared with those in

axisymmetric toroidal systems.

4.2 Gontinuous unstable spectrum of pressure-

driven modes
The coexistence of poloidal and toroidal mode

couplings might lead to the possibility to make a

continuous or quasi-point unstable spectrum.

Interchange modes have the properties to localize

around their mode rational surfaces. In one-dimensional

equilibria, both poloidal lzl and toroidal n mode numbers

are specified. For a particular selection (n, n), countable

infinite number of eigenvalues cair exist, which come

from countable infinite number of radial mode (node)

numbers. In axisymmetric (two-dimensional) equilibria'

only a toroidal mode number is specified, and hence an

overall structure of the interchange mode consists of the

superposition of each Fourier mode localized around the

mode rational surface, namely, | = "'; nl(m - l)' n/m,

nl(m + l), ..., where r is the rotational transform. Note

that since the toroidal mode number is same, each

Fourier mode localizes at the different rational surface.

Since the interchange modes are driven by the averaged

unfavarable magnetic curvature, those amplitude are

almost constant along their mode rational magnetic field

lines, and each Fourier mode is basically independent.

Therefore, the interchange mode constructed by the

superposition of Fourier modes with different radial

mode numbers and/or different relative phase can also

become unstable with different eigenvalues. Thus, as

well as one dimensional systems, interchange modes in

axisymmetric equilibria will have countable infinite

number of eigenvalues. In axisymmetric (two-

dimensional) equilibria, each Fourier mode constructing

interchange mode localizes at the different rational

surface, and hence essential structure are same as one-

dimensional one. In non-axisymmetric (three-

dimensional) equilibria, the situation is different,

because two modes with different combination of
Fourier modes, namely, (m, n) and (m', n') may have the

same mode rational surface due to the toroidal mode

coupling, namely, | = nlm = n'lm', whete n' satisfies n'

* n = iM for a particularly chosen integer i . The

superposition of Fourier modes with the same rational

surface could make a continuous variation of the

eigenfunction and the eigenvalue, leading to a

continuous unstable spectrum, or quasi-point unstable

spectrum.

In the case of ballooning modes, the situation is

different from that of interchange modes. Ballooning

modes are driven by the locally unfavorable magnetic

curvature, and hence they have a tendency to be

localized around there. On the other hand, the

superposition of Fourier modes with different toroidal

mode numbers, by changing their relative phase, leads

to the change of the localization in the toroidal direction.

Therefore, the change of the superposition of Fourier

modes with different toroidal mode number is easy to

lead to stabilization, and hence ballooning modes might

not have a continuous unstable spectrum or a quasi-

point unstable spectrum, execpt perhaps for the case

with extremety high toroidal mode numbers. Above

consideration is different from that in Ref. [3].
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Fig. 2 Ballooning modes inherent to non-axisymmetric systems. {a) radial distribution of Fourier modes of i.Vrlwith
their dominant toroidal mode numbers, and corresponding contours of the perturbaed pressure P = -V p .{ on the
vertically {b) and horizontally {c) elongated poloidal cross section.
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4.3 Pressure-driven (ballooning) instabilities
In the limit of a short perpendicular wave length

(the local mode analysis), ballooning modes are

analyzed, by using the ballooning equation in the
covering space (rg, 4, a), where ryand a are the labels

of a flux surface and a magnetic field line on it,
respectively, and 4 is a coordinate along the magnetic
field line.

In axisymmetric toroidal systems, the eigenfunction
( and the eigenvalue a2 have functional dependence: (
= 4@lV, 0*), a2 - @2(V,01), where 0s is the radial
wave number stemming from the eikonal approximation.
Thus, level surfaces ofunstable eigenvalues af 1< 0; are

topologically cylindrical with the axis in the a direction
in (ty, 06 d) space. For a specified toroidal mode
number n, semiclassical quantization condition
determines the eigenvalue of the global mode: o2 =
a2(n), and the ballooning representation can determine
the global mode structure ( = (1i, n). Thus, the local
mode analysis leads to the global mode analysis.

In non-axisymmetric toroidal systems, the local
magnetic shear having a stabilizing effects disappears

due to a large Shafranov shift even in the region with
the stellarator-like global magnetic shear, leading to the

destabilization of ballooning modes there [4]. Because

of the toroidal angle dependence of the MHD equilibria
coming from helical coils, the magnetic curvature
consists of two parts due to both toroidicity and helicity

[5]. The eigenfunction and the eigenvalue have
functional dependence: ( = €(qlV, 0p a), a2 = a20{,
06 a). The field line dependence a is due to the toroidal
symmetry breaking, and is mainly caused by the helicity
part of the local magnetic curvature [5]. Due to the field
line dependence of the eigenvalue, there are two types

of level surfaces of the unstable eigenvalue in (ry, 00, a)
space, namely, a tokamak-like topologically cylindrical

level surface and a topologically spheroidal level
surface. In Mercier-unstable MHD equilibria, both
cylindrical and spheroidal level surfaces coexist, and in
Mercier-stable MHD equilibria, only spheroidal level
surfaces exist [5]. Since the local mode analysis does
not lead to the global mode analysis due to a
dependence of the eigenvalue, it is conjectured that the
global modes corresponding to the eigenvalues with
cylindrical level surfaces are tokamak-like ballooning
modes or interchange modes, and that the global modes

corresponding to the eigenvalues with spheroidal level
surfaces are ballooning modes inherent to non-
axisymmetric toroidal systems with localized in both the
poloidal and toroidal directions [5]. Recently, the above

conjecture has been confirmed by the global mode
analysis. One example of the ballooning modes inherent
to non-axisymmetric toroidal systems is shown inFig.2.
There are eight groups of Fourier modes for 6 .VV
with different toroidal mode numbers through the strong

toroidal mode coupling in Fig.2-(a). Each group has a

similar structure to that of ballooning modes in
tokamaks by the poloidal mode coupling. Due to these
poloidal nad toroidal mode couplings, the perturbed
pressure F = -Y P' i localizes in both the poloidal and

toroidal directions, leading to the localization on some
flux tubes as shown in Figs.2-(b) and (c).
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