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Parallel Plasma Transport at Long Mean-Free Path
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Abstract
Transport parallel to the magnetic field of a toroidal plasma confinement system is investigated

through kinetic theory, with emphasis on the long mean-free path limit. It is noted that a full transport

matrix does not exist in the collisionless limit. A collisionless transport law, involving a non-local

operator that accounts for toroidal topology, is derived for parallel heat conduction on ergodic magnetic

surfaces. In the rational surface case, perpendicular diffusion must be included in the kinetic equation to

avoid singularity; this allows a calculation of the width and amplitude of resonant temperature

perturbations that will be excited by heat sources with sufficiently broad Fourier spectra.
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1. lntroduction
Collisionless transport parallel to the magnetic field

of a toroidal confinement system deserves study for

several reasons. First, the transit frequency in many such

systems far exceeds the collision frequency, so that the

long mean-free path regime has practical importance,

especially outside the separatrix, where the assumption

of full parallel equilibration is not adequate to describe

relevant phenomena. Second, the topic bears on general

issues of fluid closure: under what circumstances can a

nearly collisionless plasma be described by fluid (or

fluid-like) equations? Finally the subject has intrinsic

interest, especially in comparison to more conventional

(collisional) relaxation mechanisms.

We begin by reviewing the well-known [1] slab-

model description of collisionless parallel heat transport.

In this regard we note that the full transport matrix is

singular in the collisionless limit. Indeed, the Chapman-

Enskog model for fluid closure, even after it is

generalized to allow for non-local effects, is not

appropriate outside the short mean-free path regime for
which it was constructed. The point is that transport is

generally driven by particle and energy sources; the

density and temperature profiles mediate this driving

mechanism only when collisions dominate.

When the same problem is considered in toroidal

topology, with magnetic shear, the distinction between

rational and ergodic flux surfaces becomes crucial. On

an ergodic flux surface we derive an expression for the

heat flow closely analogous to that of the slab, with a

modified kernel to account for toroidal topology. But

rational surfaces require separate treatment, because of
the limited ability of closed field lines to distribute heat.

Including radial diffusion to resolve the rational surface

resonance, we compute the temperature perturbation

corresponding to a localized heat pulse and compare its

amplitude to that of the ergodic case.

2. Slab Geometry
Perpendicular transport coefficients often change

their functional form as the mean-free path (r,)
increases, but parallel transport changes more

fundamentally, losing its spatially local character when

@1999 by The Japan Society of Plasma

Science and Nuclear Fusion ResearchC o rre spondin g autho r' s e - mail : rdh@ phy s ic s. ut e xas. e du

T2



Hazeltine R.D., Parallel Plasma Transport at Long Mean-Free path

i. becomes comparable to the gradient scale length. Thus

the long mean-free path heat flux ft is no longer
proportional to.the local temperature gradient, but rather
responds to the global temperature profile:

entropy increase, even in the absence of collisions. Thus

entropy increases-information is lost-as heat spreads

out from a local energy source. In the absence of
physical boundaries, this spreading is irreversible.

We denote the particle source in phase space by
Ss(x, v) and the heat source by S2(.r, v). Then the
conventional rate of entropy production, denoted by

where n6 is the lowest order density, Z the temperature
and v, the thermal speed. This result, due to Hammett
and Perkins [], suggests that transport coefficients
pertinent at short mean-free path become non-local
transport operators at long mean-free path.
Unfortunately, while reproducing (l) we find that non-
locality is only part of the story. Indeed the full transport

matrix becomes singular as i, -+ €.
We solve a one-dimensional kinetic equation,

representing collisions by a particle and energy
conserving Krook model. The transit and collisions
frequencies are assumed comparable-there is no
collisionality ordering-but the sources, necessary for
the presumed steady state, are taken to be weak. The
resulting solution is used to compute the2x 2 transport
matrix at arbitrary mean-free path. In the collisional
limit, this matrix is diagonal but otherwise agrees with
conventional short mean-free path results. When the

collision frequency is allowed to vanish, the known
result of (1) is reproduced, but the corresponding form
of the particle flux, I is surprising:

, (1)

r=-L vfino(vrcs, -#)

(3)

where / is the perturbed distribution function, fia a

Maxwellian distribution and C the collision operaror,
can be computed exactly for arbitrary collisionality. It
includes an entropy flow term, expressed as a

divergence (or x-derivative in the one-dimensional
case). We annhilate the flow term by performing a

spatial average,

@=-[a,fic<r;,

(o)= - [_0,t,
and find that

@)=ls^4a+s ot\.\ / \"'o 'zrol (4)

Q)

This is Fick's law. with classical diffusion coefficient
D" = 0.5 v1z = gl2) v?tv (v is the collisional frequency)

and conventional driving force, A1 : Vlogp - eYaDlT.

What is surprising is that Fick's law represents the exact

solution to the kinetic equation for any v > 0. In the

collisionless limit, D" -9 -, whence A1 -+ 0, as indeed
the kinetic analysis predicts: Vlogp -+ eYQIT as y -+
0, corresponding to the Maxwell-Botzmann response.

Note that neither the flow, il nor the force 41, shows

singularity at v= 0.

Thus the transport matrix, even as a matrix of non-
local operators, becomes singular in the collisionless
limit. While it is always possible to relate the flows of
particles and heat to corresponding sources, a non-
singular relation between flows and profiles is possible

only at short mean-free path.

3. Entropy Production
The heat flow described above is associated with

The kinetic equation shows that this quantity is
equivalent to the conventional entropy production rate

(@)=

This result is valid for arbitrary collisionality. In the

collsionless limit, the term involving f vanishes, as we

have remarked. But the heat-flow term remains finite
and can be seen, from (l), to make a positive-definite
contribution.

4. Toroidal Geometry
To treat toroidal geometry we introduce the

poloidal and toroidal angles. 0 and (. use r for the radial
coordinate and denote that field line pitch or safety
factor by q. We also suppose a quasi-static state in
which the net input of particles and energy to any flux
surface vanishes. Then the steady state response to
localized sources and sink on an ergodic surface can be

computed analogously to the slab case, with the
resulting heat flux

A/ .,
hO- 6=- "o n'

zttro Tn

f t e'-e\
A de'LT@',(+ Iql(o'- o))cotl ^ | (6)r \21

(5)
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where [4] is the largest integer contained in 4. This is

the version of (l) appropriate to toroidal topology; it has

some interesting features, but does not address the most

important aspect of parallel heat transport in a torus:

resonance.

On rational flux surfaces r - r0, where e = molno

for integers ms and n6, the kinetic equation for steady

state parallel dynamics is singular for a general source

configuration on the surface. The problem is that a

closed field line that makes contact with a localized
energy source, say, may not connect to the balancing

sink. (The requirement that sources and sinks balance on

each closed line, rather than merely on the surface as a

whole, is the well-known Newcomb condition.) To

avoid the resulting singularity we must include radial

diffusion, with diffusion coefficient D, as a perturbation

to parallel flow. The resulting 2-dimensional kinetic
equation can be reduced to an Airy equation and solved

exactiy; it is then used to compute the temperature

perturbation on a surface with a specified source, with
the result

AT S.ono ro
= a, 

"r{(r\)
where .l.ono is the Fourier component of the source, a)t is

the transit frequency and ar = (Drslnatq'(rs))l/3 is the

width of the resonant layer. For comparable source-

strengths, this perturbation exceeds that on an ergodic

surface by about 2 orders of magnitude. Thus, if a

tokamak is penetrated by a narrow heating or cooling

spike (as from an ECH pulse or pellet), (low-order)

rational surfaces are preferentially affected.
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