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Analytical Global Model for Helical System

WATANABE Tsuguhiro* and AKAO Hidekit

National Institute for Fwion Science, Toki 509-5292, Japan
lNEC Corporation, Tokyo 108-0023, Japan

(Received: 30 September 1997/Accepted: 22 October 1997)

Abstract
A rotating helical coordinate system is introduced to analyze magnetic systems with helical mirror

symmetries. The parity nature of scalars and vectors is defined and conservation laws of parity are veri-

fied for vector calculus ooerations.

A global model of LHD type helical systems is derived based on this parity nature of vector field.

Closed magnetic surfaces, islands, chaotic field line regions, and divertor field line regions are expressed

comprehensively in this unified expression.
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1. Introduction
Symmetry plays an important role in physics.

There are two types of symmetry; one is continuous
symmetry and another is discrete symmetry. Axial sym-

metry is typical of the former one. Mirror reflecting
symmetry and finite angle rotating symmetry are typical

examples of the latter symmetry.In quantum mechanics,

corresponding quantum numbers are present for both
(continuous and discrete symmetries). Especially, the

quantum number for the mirror reflection symmetry is

called parity. The parity determines the selection rule
for the transition processes.

In classical mechanics, continuous symmetry leads

to the conservation laws but discrete symmetry does not

do so directly. Nevertheless, discrete symmetry should

have an important role for plasma confinement, be-

cause the chaotic region in the phase space of a particle

motion will be very much reduced due to the limitation
of movable space if the Hamiltonian is discretely sym-

metric.
We can analyze the tokamak theoretically with the

assumption of continuous symmetry (axial symmetry).
On the other hand, helical systems can possess rigorous

discrete symmetry (periodicity and helical mirror sym-

metry). In the present paper, we develop an analytical
treatment of helical systems based on the discrete sym-

metry.
The results of numerical computations for high

energy particle orbits in helical systems depend on the
assumption of the loss boundary. The loss boundary for
particle orbits is conventionally assumed to be the
outermost magnetic surface. In this case, a large part of
the reflecting particles are lost in a very short time.

Then, a big loss cone appea$ in the particle phase

space. On the other hand, if the loss boundary of par-

ticle orbits is placed on the vacuum vessel wall, almost

all reflecting particles can have clear drift surfaces if the

starting positions of particle motion are placed inside

the magnetic surfaces. If the pitch angle is placed be-

tween the passing particle and reflecting particle, the
particle orbits show a chaotic nature and are eventually

lost to vacuum vessel wall. Even in this case, the life
time is very long compared to the transit time (L/urn: L
is distance to the vacuum vessel wall, u* is thermal ve-

locity of particle). The loss cone should disappear in
this case[1].
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Then a global model is necessary to estimate the
performance of a helical magnetic field for plasma con-
finement. Closed magnetic surface regions, islands,
chaotic field line regions and divertor field line regions
should be represented by unified expression.

In section 2, we introduce a rotating helical coordi-
nate system which is appropriate to handle the helical
mirror symmetry. Parity is defined for vectors and sca-
lars. The parity conservation laws for vector calculus
operations are verified. In section 3, we point out that
the MHD equilibrium of helical systems can be ex-
pressed using even vectors B, J and even scalar p. An
explicit analytical expression for the magnetic field is
derived. Section 4 is devoted to conclusions.

2. Parity Conservation Laws for Vectors
It is important to use an appropriate coordinate

system for the analysis of symmetry. For LHD type
helical systems, the rotating helical coordinate system
(X, Y,0) is an appropriate one. It is defined by the rela-
tions

where

d2k
ddr: -k. (5)

ro is the major radius of the device (:3.9 m for LHD),
p is pitch number of the helical winding (:5 for LHD)
and / is the conventional toroidal angle (0 = p0). i, j, k
are a set of right handed rectangular unit vectors.

ixj:k, jxk:i, kxi:j (6)

Any vector A can be represented as follows.

A: Ati + A2j + A3k,

Ar: A't, Az: A' j, At: A.k. (7)

The vector calculus operations [2] are reduced to

v A: (*.Y)o, .(*,-Y)o,
.(+&.+?*-Y&)",, (e)

v x A :,N&_Y)r,

-(+&.+t*-+e)o-P,^f
.r[(+ &.ryu*-Y u!,)^,

-(*'.Y)"'-n'o'l
r 0A" dAl+ r'l ai- ,n)' (ro)

where r is radial distance in a conventional cvlindrical
coordinate system,

vy: tfr+i 
uq,

*o(+&.+*,-Y&)' (8)

/"\
, = (*,y,Z)r:l f l: xi+ Yi- ro# (l)

\e/

/ coso sind \ . .

i:f coso.:'i l,ffi:coslk+pj, (2)

\smal

/ -sing sind \
i: 

| -sine cos/ 
| , !r: -sinek- oi , (3)

\ cosd I

. l*:o\ oo-:f -'il,/, fi:-cosai*sinaj, (4)

r = roi- X cos(p$) - Y sin(p|). (1 1)

In the following, we restrict the discussions only to
vectors and scalars whose / dependence are expressible
only through functions of cos 0 and sin fl for example,

/- \ t_ ^.\
I 8, I I B,(X,cos9, Y,sin0) |
lBrl: lBr(X,cos9, Y,sin0) l. (12)

\r, / \AtX coso,Y,sina) /
Helical mirror symmetry at Q: 0 is given by the rela-
tion of magnetic field B(X, Y, /) and B(X, -Y, -il.
Helical mirror symmetry at Q : n/2p is given by the
relation of magnetic freld B(X, Y, O and B(-X, Y, n/
p-Q). For an LHD type magnetic field, the following
symmetric relations are possible.

B{X,-Y,-0) : .B1(X, cos 0,-Y,-sin9)
: -81(X, cos 0, Y, sin?) : - BlX, Y, 0),

B2(X,-Y,-0) : 82(X, cos 0,-Y,-sin0)
: Br(X,cos9, Y, sin9) : Br(X, Y, /),

h(X,-Y,-0) : 4(X,cos 0,-Y,-sin0)
: Br(X,cos9, Y, sin 6) : Br(X, Y, Q),

Br(- X, Y, n/ p-Q) : Br(- X,-cos fl Y, sind)
: Br(X,cos0, Y,sin0): BlX,Y,0),

Br(- X, Y, n/ p-O : Br(- X, -cos 9, Y, sin 0)
: -Br(X,cos0, Y,sin?): -82(X, Y, p),

B.(- X, Y, n/ p-fi : Br(-X,-cosfl Y, sin 0)
: Br(X,cos9, Y,sin0) : 4(X,Y,0),
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Fig. 1 Parity conservation laws for helically symmetric
field.

Then we define even parity vectors as having the fol-
lowing parity nature,

/r, \ l2a.(X,cos(pq1) x b.( r,sin(p/)l /trrt\
I ", l:f 

2c"(X,cos(p|))x 4(r,sin(p/))1= | [oel l,
\4/ \)e"(X,cos(pil)x f,(Y,sin(p/)) | \leel I

(13)

where the subscript e(o) represents even (odd) func-
tions of each argument. The symbol [eo] represents

that the function is a summation of products of even

and odd functions with (X, cos0) and (Y, sin9). Odd
parity vector is defined by

/r'\ /t""t \
lB,l : l["o] l. (14)

\r,/"* \toot /
Even scalar f"". and odd scalar fi"o are also defined in a
similar way.
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YXA:8,
V X B: PoJ,

VP: TX B.

1"u.n: fe el , (15)

f"da: lo ol . (16)

For these scalars and vectors, the following relation-

ships (parity conservation law for helically symmetric

field) can be verified directly.

V(even(odd) scalar): odd(even) vector, (17)

V'(even(odd) vector): odd(even) scalar, (18)

V x (even(odd) vector): even(odd) vector, (19)

(even vector) X (even vector): odd vector , (20)

(odd vector) x (odd vector): odd vector , (21)

(even vector) X (odd vector): even vector, (22)

(odd vector) X (even vector): even vector. (23)

These relations are summarized in Fig.1..

3. MHD equilibrium of HelicalSystems
Parity conservation laws for helically symmetric

fields simplify the relations of MHD equilibrium,

(24)

(2s)

(26)

Vector potential A, magnetic field B, and current den-

sity J should have the same parity nature (even parity
vectors), because they are related by rotation (Vx).
Then the pressure distribution P should be an even

scalar.

For example, the vacuum magnetic field for LHD
type helical systems is obtained as follows.First we write
down a general expression for even vectors for the
magnetic potential A.

B_l sinl(Pa,i Yar)*cos0XYa,
A::l cos9(*b,+ Vb)+sin1xYb3

o 
\O r, I Y qI sin2lX Y c, t cos2 0(* co *

The coefficients Bo, a, a1 - c, are determined
equation

0:vx(vxA).
The lowest solution reduces to

Bl 0 \A,:21 o 
I' 

" \(Y- x)/zl

\

*rl
(27)

by the

(28)

vector
product
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If we include more higher order terms, we get

Then, an analytical expression for the magnetic field of LHD is given by

Poincar6 plots of this magnetic field reconstruct closed
magnetic surfaces, islands, chaotic field line regions,
and divertor field lineregions very well, showing the
structure of the actual LHD vacuum field [2].

4. Summary
Besides the M-fold periodicity in the toroidal

angle, helical mirror symmetry can exist strictly in heli
cal systems. These discrete type symmetries are treated
by using a rotating helical coordinate system. The parity
nature of scalars and vectors is introduced and parity
conservation laws are derived.

Global structures of helical systems are analvzed

(30)

(31)

based on these discrete type symmetry relations. Vac-
uum magnetic field is shown analytically which can
express comprehensively closed, chaotic and divertor
field line regions.

If finite conductivity is introduced, the rigorous
helical mirror symmetry relation for equilibrium is

modified and diffusion flux of plasma will take place.
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