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Abstract
The normal to a magnetic surface component of the bounce-averaged velocity of trapped particle

drift is investigated. We define this component as vun:6rn/to where 6ro is an excursion of the trapped

particle across the magnetic surface during one bounce time zo. A method of computing r"o is con-

sidered in case of a stellarator magnetic field given in real-space coordinates, without transforming the

field to magnetic coordinates. We also consider an evaluation of neoclassical transport for the L/ v

transport regime.
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1. lntroduction
The quantity z"n is of great importance for confine-

ment properties of non-axisymmetric toroidal devices at

low collisionality (long mean free path regime). This

quantity is directly related to the variation on a mag-

netic surface of the second adiabatic invariant Jr:$v,dl,
which enters into the general equations of neoclassical

transport theory for the contribution from the magnetic

field asymmetry to the total particle and energy fluxes

across the magnetic surfaces (see, e.9., [1,2]). We pres-

ent this variation of "{, in the coordinate system r/', 00,

g, where a magnetic field line is the intersection of the

iy'':const. and go:const. surfaces, ?':const. is the

magnetic surface equation. From [3] we can write

dq, by the method of integration along the magnetic

field lines for a given stellarator magnetic field in Carte-

sian coordinates. For this calculation guiding center

drift equations are used in the limit of small gyroradius.

After calculating 6tp one can frnd )Jr/000 @q. (1)) as

well as dr, and zun:

6r": \tp/lYtPtl , v^n: 6rn/ ro, (2)

where Vrp, is the Vr7.r value at the initial point of inte-

gration.

2. Main Equations
For arbitrary steady-state magnetic and electric

fields the guiding center drift equations can be written

as (see, e.9., [4])
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dJ eBfs".
6er: mc{ g' o"' (1)

where g,* is the metric tensor of the coordinate system

tp, 0s, q, g:Det(g,.s), dr2 is the increment in r/ due to

the excursion of a trapped particle across the magnetic

surface during the bounce period. We shall compute

drB
dt:E \ t v6;

*:-( |t"t -"-4'(h* p,,Y x h)/D,

(3)

(4)
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where lo is the drift velocity perpendicular to a mag_
netic line, p,,: mcv,,/ eB, h: B/ B, D : | + prB. (y X
B)/8,, Jr/vf/8. We assume (as is common in calcu_
lating "{,) that the Larmor radius of a particle and the
electric field are rather small, and consequently, the
trapped particle excursion across a magnetic field line
during a bounce time is insignificant. Therefore, as a
first approximation, ro may be neglected in (3) and
Eqs.(3) and (a) can be solved by the method of integra_
tion along a magnetic field line. In this case the quantity
vo [4] can be used for calculating the rate of change of,
V, dlp/dt: va.Ylt. As a result, we arrive at the set of
equations containing Eq. (4) and the equations

drB
at:E uu (5)

dV
&:vo. vtp. (6)

For calculating Vrp we use the equations [5]

#:-#(H.*#n*Ho),
dQ : _ ,, ( g!:" _dB, n,0Br^ \
dt --E \ a6r'- ahu- a&u )'

#:-#(H"*Hn*Ho),
where 81, 82 and 83 are contravariant components of
B in a normal curvilinear system of coordinates (Er, Er,

€r), P : 0 E/ 0 f ,, Q : A rp/ a 82, G : 0 rp/ 0 lr, the multi-
plier v,,/ B corresponds to the integration variable r.

Solving Eqs. (4)-(6), we shall find the r/'value for
each moment of time t. For t: zo we obtain

6rp: ,p@) ('/(0):0) (7)

This quantity has to be used in Eqs. (1) and (2).
The initial conditions which are necessary for solv-

ing Eqs. (4)-(6) can be found in consequence of the
preceding computation of the magnetic surface of inter-
est. After this computation, within the part of this sur-
face corresponding to one magnetic field period, we
choose a number of magnetic field lines for which we
wish to calculate drp. For each of these lines, the point
corresponding to a minimum B value is taken as the in-
itial point of integration in Eqs. (4)-(6). The initial
values of Vrp at these points are determined using the
method [5] concurrently with the magnetic surface
computation. Solving Eqs. (a)-(6) under these initial
conditions, one can obtain the 6g distribution as a
function of the initial value of the particle longitudinal

velocity 2,,, and the position of the magnetic line seg_
ment under consideration (this position corresponds to
a certain value of do).

It is convenient to present the calculation results in
a normalized form as a dependence of 4 on y, where
the parameters 4 and 7 are related to r;un and rr,,1 by

\: v^nR/(vrs\a), y: vur/vrs (g)

Here zro : p;4, r.o: mcvro/eBo, Bo is the average
longitudinal magnetic field, and R is the major radius of
the torus. In particular, for the model of a standard
stellarator [1] the amplitude of the 4 distribution over a
magnetic surface equals 4.:0.5.

3. Application to Ouasi-Helical Symmetry
To exemplify the above technique, we present the

results of the v^o calculations for the magnetic field
which is appropriate for a zero-beta variant of the to-
roidal quasi-helically symmetric stellarator [6]. For
quasi-helical symmetry the particle drift was formerly
investigated only in magnetic coordinates (see, ag.,

[7]). We consider a real-space model of the configura-
tion [6] with the magnetic field expressed through a
superposition of toroidal harmonic functions containing
the associated Legendre functions (0<n<I2, ^:rhM,lM.tZ, nand m are the poloidal and toroidal harmonic
numbers, rzo is the number of periods along the torus,
mr:6).The decomposition coefficients were found by
minimizing the magnetic field component, which is nor-
mal to the given boundary magnetic surface [6].

Figure 1 shows the boundary surface [6] and two
magnetic surfaces calculated for the masnetic field

Fig. 1 Boundary surface [6] (solid line] and magnetic sur-
faces, corresponding to po=12.33 (near boundary,
t=1.4751 and po= 11.95 (inner, t=1.41\; the dimen-
sions are given in the same relative units as in [6]
ko is the initial point of integration in the 9=0
cross-section for z= 0).
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Fig.2 Distribution of B over the length of one magnetic

field period for magnetic lines, numbered in Fig. 1

for the surface po= 12.33 (b=B/4, a= moql2nl'

Fig.3 Graphs of 11 Ior the magnetic surface po=12.33

(q= v"nR/v ,orro, l= vu,/ v n, the curves are numbered
according to numbers of magnetic lines in Fig. 1);

for field lines 2, 3, 4, 5 the 4 values are approxi-
mately equal in magnitude but opposite in sign to
those in the graphs for field lines 10, 9,8, 7; for field
lines 1, 6, 1'l 4=0 independent of y, lor y)05
q-0i y values of 7=0.5 correspond to the transi-
tion from particles trapped within one magnetic
field period to particles that are untrapped or
trapped within two or more field periods.

model used (the magnetic lines for which r;"n was calcu-

Iated are indicated by numbers). In Fig. 2 the B/Bo dis-

tributions are presented for the specified lines. Fig. 3
shows the results of z"n calculations for the near-bound-

ary magnetic surface. On the average, for this surface

the maximum value of ? turns out to be of 4. o g.g5 itt

contrast to q^=0.5 for the standard stellarator [1]. For

the inner magnetic surface (po:11.95) the maximum

value of 4 has been found to be of. 4^- 0.25. Note, that

the results for the near-boundary magnetic surface are

in reasonable agreement with the tran estimates based on

the results of [7] for quasi-helical symmetry'

4. Neoclassical Transport Evaluation
The results of the A^/ aIo calculations (1) can be

directly used in evaluating the neoclassical fluxes asso-

ciated with the magnetic field asymmetry for stellara-

tors. Using Eqs. (2.1) and, (2'2) of Ref. [8], where the

variables Er, Er, Et correspond to the variables 1p, 0s, Q

in the present Paper, one can obtain the equations for

the particle and energy fluxes across a magnetic surface,

s{, and sF1, for the t/ v transport regime (for a mag-

netic field period):

- c2n I do^ E; f* dJ - aflo\
rrn : - 7l, ̂

t 
J -F I s J' VFZ,I'

" I:ffiu--.,.a,'#,\'
(sF1 differs from (9) by the factor mJ tBo/Z in the inte-

grand). Here /r(o) is the Maxwellian distribution for 7-

type particles, w is the particle energy, lil.io : w-6(,/r1

tp, 0()) and w."* : w.u*(/ ,, U, 0o) are the minimum and

maximum energies which are attainable by the trapped

particles. The Coulomb frequency r', and the quantity

A, are the same as in [1] and [8]. The ./, value can be

obtained by integrating the equation dJ,'(t)/dt : v,,2

(concurrently with Eqs. (4), (5)). The variable 0s can

be defined in such a way that B .,lg/93:1' and

d|o:(B.Vcp)dlo/lVq x VPl.Here d is an arc length

of the curve which is the intersection of the magnetic

surface and the q:const surface. With the use of these

relationships the neoclassical transport fluxes, s{o and

sF1, can be calculated if A\/ A0o and "/', are obtained as

functions of "/, and w (or J t and q,1).

It follows from (9) that the neoclassical transport

coefficients are qualitatively proportional to a square of

a^/Aeo (or to a square of 4 as it follows from (1)' (2),

(8)). The maximum value of 4 for the near-boundary

magnetic surface (see Figs. l, 2, 3) is approximately by

a factor of ten less than 4. for the standard stellarator

model. Thus for this surface one would expect that the

contribution caused by the magnetic field asymmetry to

the neoclassical transport coefficients would be a hun-

dred times less than the corresponding contribution for

the standard model of a stellarator [1] with equivalent

sizes.

It is necessary to make the following remark. To

exemplify the proposed method, we have considered

'good' closed magnetic surfaces. Now we shall briefly

discuss the possibility of applying this method for mag-

netic islands formed at rational surfaces and for ergodic

regions. The magnetic surface function r/ which enters

into Eq. (6), can be defined as a single-valued function

(e)
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for the regions with closed magnetic surfaces as well as
with island surfaces. Therefore, the technique proposed
in this paper is completely applicable for calculations
within magnetic islands formed at rational surfaces.
However, for ergodic regions with stochastic behavior
of magnetic field lines the magnetic surface function
cannot be defined as a single-valued function. There_
fore, in the strict sense the proposed method can not be
applied directly within ergodic regions. For these re-
gions the proposed method can be used only for ap-
proximate estimations in case of a low stochasticity for
rather small intervals of the preceding field line integra-
tion (while the stochasticity does not strongly manifest
itself).

5. Gonclusions
If one has a method of computing the magnetic

field and its spatial derivatives, then the technique pro-
posed in this paper can be used for evaluating neo-
classical losses across the magnetic surfaces. This tech-
nique allows one to calculate the trapped particle ex-
cursion across the magnetic surface during one bounce
time, and also neoclassical transport fluxes across the

magnetic surface, in the magnetic field given in real_
space coordinates without transforming the field to
magnetic coordinates. The present method can be used
for the plasma confinement analysis in real stellarator
magnetic configurations such as .,IJragan", ,,Wendel_

stein", "Heliotron", .,LHD,' and others.
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