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Abstract
A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on

specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is

conseryed and the linearized equations for ideal modes are self-adjoint.
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1. lntroduction
Recently, several codes have been developed for

the magnetohydrodynamic (MHD) linear stability ana-

lysis of the three-dimensional (3D) equilibria calculated

by the VMEC code[l]. A comparison study of the

codes is summarized in Ref.[2]. The codes are classified

into two categories. One is the 3D approach, which has

an advantage that the stability of the exact 3D equili-
brium can be calculated without any approximation.

However, these codes can only examine ideal modes

because they are based on the energy principle, and it is
difficult to provide sufficient perturbation space to
search for the largest growth rate.

The other is the 2D approach. Some of them em-

ploy reduced MHD equations, which can treat not only
ideal modes but also resistive ones. The nonlinear

growth of the unstable modes can also be studied as an

initial value problem. However, understanding the ap-

proximation which is used in reducing the 3D equili-
brium properties to 2D expressions is essential in these

approach. Recently, Todoroki[3] derived a Grad-Sha-

franov type equation by averaging the 3D equilibrium
equation on specified coordinates without any ordering.

This means that any 3D equilibrium solution satisfies

the equation. In this paper, the averaging method is ap-

plied to the derivation of a reduced set of MHD equa-

tions, in order to study the stability of the 3D equilibria

against the resistive modes as well as the ideal ones.

Since the coordinates introduced by Todoroki are not

easy to treat in the stability analysis, the use of flux co-

ordinates is considered. In this case, every flux coordi-
nates system cannot give the Grad-Shafranov type equ-

ation in the averaging method, because the equation

has to be expressed with only metric and surface quan-

tities. In Section 2, the averaged equilibrium equation

in flux coordinates is discussed. The reduced MHD
equations based on the averaging method are derived

and the basic properties of them are examined in Sec-

tion 3. In Section 4, numerical results are presented.

Conclusions are given in Section 5.

2. Averaged Equilibrium Equation
In arbitrary flux coordinates (p, 0,6), where p is

the label of the magnetic flux and 0 and t are the po-

loidal and the toroidal angles, respectively, the mag-

netic field, B, and the current density, J, are expressed

by

I A- rtU,
B:Yp x v | 

-s 
o-- Et p(p,4 g) | (1)' \dp op- '-'l

and

t:yp'" (# t*JooE* tu(p,q e) ) e)
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respectively. Here y(p) and V(p) denote the toroidal
and the poloidal magnetic fluxes inside the flux sur-

faces, respectively, and (p) and F(p) are the total to-
roidal current inside the flux surface and the total po-
loidal current outside the flux surface, respectively. p
and i, are periodic functions with respect to both 0 and

f. By substituting the contravariant components of I
and J into the force balance equation, Y P:I X B, and

averaging the equation in the ( direction, we can obtain

,., dP dF, - Au,
(Js)e fr : - ; Q s Ble- fi, Q s t)t

where (/)E:$Ide/{,dE is used. The periodic tunctions

of. p and 7 must not enter this equation for the aver-

aged equilibrium equation to be expressed with only
metric and surface quantities. Therefore, a constraint
must be imposed on the flux coordinates to elimination
the last two terms.

ir: ir (p, 0), or i: i (p, 0) . (4)

It can easily be shown that the former condition corre-
sponds to that used in Todoroki's approach[3]. There-

fore, this condition is used here. In this case, (-S A)e
and (.fS I), can be obtained with the relations of
Bi:BiiR. Then, we obtain a Grad-Shafranov type equ-

ation in flux coordinates with ir: i, @, 0), which can

be written as

#le( '*#) -"*(*PY*).ry
a(Fh,) l , -, dP ^dF

I 
: - tJs)e oo- 'or' (s)

where Gor: Gij - GiEGjE/Gee, h,: Gig/Gg6, T : F/GEe

- hudV/dp and Gu = Gu/l1)e.It is noted that no or-
dering or approximation is used in the derivation;
therefore, any 3D equilibrium solution satisfies this

equation. Thus, if a reduced set of MHD equation is
derived in flux coordinates with Eq. (4), it must be con-

sistent with a 3D equilibrium. An equation similar to
Bq. (5) is derived by Pustovitov[4], however, he used

an ordering with respect to the magnetic field. More re-

cently, he has obtained a similar equation without mak-
ing any approximation[5]. If we take irO as the spe-

cial case of the constraints of Eq. (4), which corre-
sponds to the condition that the magnetic field line is
expressed as a straight line in the flux coordinates, the

averaged equilibrium equation is simplified to

r \l+c"9xll= '-'dP dFdY
" oP l, =- (Js)e oo- oofr' (6)

because 
^l 

g Be : dy/dp.

3. Reduced MHD Equations Consistent with
3D Equilibrium
A reduced set of MHD equations including resis-

tivity is derived by reducing and averaging the full
MHD equations in the flux coordinates which give the

Grad-Shafranov type equation. In order to express the
magnetic differential operator in an algebraic form, the
condition of i-g is employed here. The procedure is

similar to the one developed by Strauss[6], however,

only the following assumptions are used here: First, the
magnetic field is expressed as

B:Yx x V0+ ve xV\Y (7)

with the condition that yr, V D yr, where the sub-

scripts, 0 and 1 denote the equilibrium and the per-

turbed parts, respectively, and the variable (except for
the metrics) without either of the subscripts includes
both of them. Plasma incompressibility and the condi-
tion of uz11 yo, ud are also assumed to eliminate the
compressional modes. Furthermore, the assumption

that the pitch number of the equilibrium quantities is
much larger than the toroidal mode number of the per-

turbation is used.

Then, the reduced equations for the poloidal flux,
9, the stream function @ and the plasma pressure P
are obtained. These consist of the Ohm's law includine
resistivity 7,

#:-(# ".v)(@+ 
q\te)e , (8)dt 'Xo

the vorticity equation

_b^l-s)E o (G ulr -tt dt lo

.l-e (^[s J€),
- (: B.v ),Y+ [((2)r, Pl, (e)Xo Xo

and the equation of state

9:0.(lt

#tep*ry** G*#)-*(o***

. (#%>'- (##>,, (3)
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Here the vorticity is given by

t f7 116 - 
A@e)e _ a!)e(Jsule:; ao (11)

with the relations kr)e : Q/fi)AA/aQ, (uu)e :
-(l/ fiaO/ ap and (u,), : (g,;)e (or), , and the current

density components are given by

, r- +\ 0(B)r O\B)t(J8r'le : --A; - --a6- ano

(/)e : G61(-s Ii)E $2)

with the relations (^lE e)e : -Q./ Xiav / A0 , <J I B9>e

: (r/ fi)av / dp and (8,)e : c, (l s 6;)r. The convec-

tive and the magnetic derivatives are expressed as
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(13)

respectively, the energy conservation law is given by

3,r*.M+u) 
: - n | <t-st ),ffi 0,. (zr)

Finally, the normalized and linearized equations

are given by

av la ,a\ 1

;:-(A*'-ae)o+i(rr6, (22)

- 3,,rr rr )q - (&+, !N) <.frr, r,

- xirIv,GPl** /,1@)e , Pl, (23\

and

(20)M=+16'y,qa,1,a,,

respectively, with the Poisson bracket defined by

rrsr : +(44-4+\. (r4)u' or /o\ 0p 00 00 0p l'
The averaged curvature of a field line is given by

I Fo\.
(32)t: 

=5 
(1s)

Xo

In this derivation, the large aspect ratio approximation

is not used, therefore, these reduced MHD equations

can be applied to a configuration with a small aspect

ratio.
As the above assumptions are used in the deriva-

tion, the basic properties have to be examined. First, by

{:{,-e'n and

,#,"'v )d: uilr* r*, rr,

1.aking a/ at: Q :0, the equation that

"*(**@#'.*f*):'

a, = (G)e dp d0 dl ,

u : - lra,,
r = | l<o;r(ui)a@,)adr,

Here S and p. denote the magnetic Reynolds number

and the beta value at the magnetic axis. The linearized

equation for ideal modes with a time dependence of
exp(iat) can be written in the following form;

"tr(,,laolz (ao*ao
-'" J %l€ede I apl - {8d<( ap a0

* o,,lNul' + <[s!,6 >' (# ffi
-o@* a'@ \ ..lao lz a /(.lsr6)e \- ap deae )-'lapl ap\ /" I

.q##wrl,' (2s)

The self-adjointness of this equation can easily be con-

firmed.

4. Numerical Calculation
The ARMS code has been developed to solve

(22) - (24) by applying the RESORM code[7] to these

equations employing the geometrical toroidal angle as

f. Figure 1 shows the linear gowth rates of the resistive

and the ideal interchange modes in the equilibria used

in Ref. [2]. The growth rates of the ideal mode with

(24)aP __1. !!rAA0t ls dp 00'

. #u#)*,r;,1!*l'1^,
It ^ lavl, I aw av , awaw\: Jl"ulapl - w,e\ ap ae - ap N )

(16)

is obtained. Equation (6) is obtained by setting the con-

stant of integration equal to -d,F/ dp. This means that the
reduced equations are consistent with 3D equilibrium.

Next, when we defined the volume element, the

internal energy, the kinetic energy, and the magnetic

energy as

(17)

(18)

(1e)
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--tr--CIIAFAR (ideal)
--o-ARMS (ideal)
+ARMS (5=108)

Fo Vo)
Fig. 1 Linear growth rates of ideal and resistive inter-

change modes normalized by the poloidal Alfv6n
time.

m:3/ n:2 given by the ARMS code are compared
with those by the CHAFAR code[8]. Good agreement

between them is obtained. The resistive modes are also

calculated and it is shown that thev are unstable below
the ideal beta limit.

5. Conclusion
A set of nonlinear reduced MHD equations for re-

sistive modes is derived based on the averaging method
without an assumption of large aspect ratio. This set of
the equations is consistent with 3D equilibria if the flux
coordinates satisfying Ap/ aE:O or ai/ AE:Q are em-
ployed.

It is confirmed that the energy conservation law
can be derived and that are self-adjoint the linearized
equations for ideal modes. The growth rate of the ideal
interchange mode agrees well with the results of the
CHAFAR code.
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