
J. Plasma Fusion Res. SERIES, Vol.1 (1998) 456-459

Analytical Theory of Flux Coordinates for Stellarators
PUSTOVITOV Vladimir D.

Russian Research Centre "Kurchatov Institute", Moscow, Russi'a

(Received: 30 Septembet I997/Accepted: 22 October 1997)

Abstract
Effective method is proposed to construct the flux coordinates for toroidal plasma equilibrium con-

figurations. This method is applied to conventional stellarators. Three kinds of flux coordinates are con-

sidered: coordinates with a fixed toroidal angle, Hamada and Boozer coordinates.
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1. lntroduction
Flux (or magnetic) coordinates are defined as cur-

vilinear coordinates (a, x2, x3) with a: consl describ-

ing toroidal magnetic surfaces, and x2 and x3 as the an-

gular coordinates on these surfaces. For general theory

see [1,2].
Three special kinds of flux coordinates became se-

lected in a practice: coordinates with a fixed toroidal
angle [3, 4], Hamada [5] and Boozer [6] coordinates.

Although the general theory explains [1] how to trans-

form one system into another, many questions arise in
applications [7].

Besides computational aspects [7], there is a great

problem of using results expressed in different coordi-

nates. One needs to know, at least, how much one co-

ordinate system differs from the other. Their compari-

son is difficult because they are introduced in a differ-
ent way, which makes them isolated.

Recently a unifying approach was proposed [8]
allowing to treat and compare different systems easily.

Here it is applied to conventional stellarators, which are

the systems with planar circular axis and helical mag-

netic field.

2. General Equations
Magnetic field B can be represented in an arbitrary

flux coordinates as (see, for example, [1.])

2nB: VV X Vr3 + VO x Yx2 *YaxYq, (1)

where \I, and (D are the poloidal and toroidal fluxes re-

spectively, Fig. 1, and r7 is the double-periodic function

depending on the choice of x2 and x3.

The freedom in selecting x2 and x3 can be used to

simplify the expression (1) for the magnetic field. For
example, to make field lines straight by x2 - x2 * 4/
(D', where prime means the derivative with respect to a.

Formally, it corresponds to 4 : 0 in Eq. (1). If we as-

sume after that .r3 : f, where I is the given geometrical

coordinate (such as the usual toroidal angle), no more

Fig. 1 Toroidal and poloidal magnetic fluxes
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freedom remains. Otherwise, in addition to 4 : 0 it is
possible to put one more constraint. For Hamada and
Boozer coordinates it is imposed as a requirement for a
functional dependence of the Jacobian

li: ([yaxyxzl. vr3)-'. (2)

Finally, coordinates (a, 0r, e) with a given x3 (to-
roidal angle), which can be called "basic" coordinates,
are defined by

ry:O, x3:E' (3)

Hamada coordinates (a, 0r, (s) are introduced by

q:0, {c":#, ()
and Boozer coordinates (a, 0r, l")by

rt:o, "r":## (s)

Brackets (...) denote the usual volume averaging be-
tween neighboring flux surfaces:

dflt_
(X> = -:dV 

J Xd3r: fi J x,tgax, ax3. (6)
V

Definitions (3)-(5) are mathematically perfect,
but not informative. Except x3 : E, they show some
secondary properties, but there is no any hint on the x2

and f. Also, it is not clear how to comp.ue two sys-
tems even in the case of similar definitions (a) and (5).

The alternative way proposed recently [8] is based
on the relation

1 -4n2 f
G= v'u> Q)

and two equations

(2nB-Yax Yq).Yx2 : -onrYA,, (8)/ vl
and

(2nB-Yax Yr1). Vx3 : o"r#4.. (e)vv)
Relation (7) is the direct consequence of definition (6),
and (8) and (9) are two components of the vector
equality (1).

There are four functionsi x2, x3, 4 and f. Any two
of them can be considered as "free parameters". If 4
and /are given, Eqs. (8) and (9) turn into equations for
x2 and 13. Traditionally, Hamada and Boozer coordi-
nates are introduced in such a way, see Eqs. (4) and
(5). We propose to use the algorithm for any coordinate

system. Arbitrary flux coordinates can be considered in
the frame of a single unified approach because their
Jacobians 

"[ are represented now as the elements of
one-parameter family in Eq. (7). It allows to make a
"smooth transition" from one system to another.

The most important is that straight field line (SFL)
coordinates 1a,0r, E) with a fixed toroidal angle can be
prescribed in the same manner as Hamada and Boozer
coordinates. In addition to Eq. (3), they can be intro-
duced by Eqs. (7)-(9) with [8]

q:0, f: B've.
Hamada coordinates correspond to

4:0, f : 1,

and Boozer coordinates to

(10)

( 11)

(r2)q:0, f: B'.

These relations are more convenient for coordinate
comparison than traditional Eqs. (3)-(5).

Let us note that "basic" coordinates are, in fact, in-
troduced here by three functions: q, f and f, although in-
itially there are only two degrees of freedom. This impor-
tant nontrivial trick, allowing to include the .,basic" coor-
dinates into the unified approach, becomes possible be-
cause Eq. (9) tums into identity at the choice of Eq. (10).

3. Comparison of Coordinates
In toroidal systems magnetic field is inhomogene-

ous. It is the only reason why "basic", Hamada and
Boozer coordinates are different. In conventional stel-
larators with planar circular axis

n:E+ E. (13)

Here B is the helical field, and B is the axially symme-
tric field.

B - Bres* B, (14)

B, is the toroidal component of B, and the subscript p
denotes the poloidal component, which is usually small.
Representations (13) and (14) help to show explicitly
the origin and degree of the difference.

An attractive feature of Eqs. (7)-(9) is that nor-
malization or even dimension of the function / can be
arbitrary. It allows to express these functions in Eqs.
(10)-(12) in the same units and in the similar form to
make easier their comparison.

It is clear that f:1 in Eq. (11) can be replaced by /: Bfr, where 8o is the toroidal field at geometrical axis r
: R. And proper coefficient for B . V I in Eq. ( 10) could
be RBo. At low fl which is typical for conventional
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B'V0e:-2?t#ffi
for "basic" coordinate system,

B'V0":-'"##
for Boozer coordinates. and

B'V0t:-r"#A

stellarators, diamagnetic contribution to r8, is very

small, and rB, = pSowith a high accuracy. Then we get

where

e=I -4/* (n)rD6
It was taken into account that rBr: const. on the aver-

aged magnetic surface [1].
This property together with Eq. (21) allows to

write

<B'z>: rB,(8. vg) + (Bi), Q4)

which relates (B' Vg) with (82).

Poloidal field is small in stellarators and can be

disregarded in Eqs. (22) and (24). Then (B'Vi) and

(d.2) are determined by rB, and Q. The first value is al-

most constant all over the plasma cross-section (dia-

magnetic change of rB, is very small). And (Q) is al-

ways small. Then there is no need to distinguish

(8.V0 and (82) from (B'Vf)o and (82)o in soMng

Eqs. (8), (9) or (1s), (16).

5. Magnetic Differential Equation for a Stel-
larator

To find x2 and x3, one needs to solve Eqs. (8) and

(9) with gSven 11 and I For basic, Hamada and Boozer

coordinates (rt : 0) they turn into magretic differential

equations

B.Vx: y. (2s)

where B' V E, 82 and their averaged (B' Vg), (f2) arc

present. These values and operator B'V contain the

magnetic field 4 which is gven b; Bq. (t_g) for con-

ventional stellarators. Condition lB | << lB I allows to

use so-called stellarator expansion for solving (25).

The method was proposed more than 35 years ago

[10] for a large aspect ratio systems, but it can be

modified to avoid this restriction [1, 9]. To apply the

technique described in Ref. [9], we have to represent

all values like Eq. (13) and to split Eq. (25) on two parts:

E.vt + <8.vr)t: t, (26)

B.Vi + B'Vx:r. (27)

Here (X)s and X mean the same: axisymmetric part of
function X.

The last equation, which was linearized, gives

i:-dr'-- ''ut *E,, ,

where

(1s)

(16)

(17)

for Hamada coordinates.

By definition, any SFL coordinates must satisfy

B. V(r3 - qx2): 0, (18)

where q : -A'/V'. Therefore, corresponding equa-

tions for toroidal angles are similar to Eqs. (15)-(17).
Equations (15)-(17) show that "basic" and

Booz,er coordinates are very close to each other, but

Hamada coordinates stay apart. Such result was ob-

tained in Ref. [7] numerically for some particular

choice of parameters. In our case we come to the con-

clusion even without solving any equation. It must be

valid in a general case, because always Bf + 4 6', is
much better approximation of E than 48.

4. Surface Functions
Equations for "basic" and Boozer coordinates con-

tain surface tunctions (B'Vg) and (42). By definition
(6), they must be calculated through the integrals over

the volume I/ inside the magtetic surface. For conven-

tional stellarator the integration over I can be done

analytically with a result [9]

(X) - (X+ div(Xdr))', (19)

where (...)o stays for 2D "quasi-tokamak" averaging.

Then

<rt>:-qi.v1fi.*y10, eo)

where .t is the oscillating part of the integral ! X ag. n
allows to get

ln,Er+ fr):0. (2r)

With a help of this useful relation we obtain im-
mediately

<82>:<B?+ 4- p>

at = fi,E n.

(28)

(2e)12 B? t rzrl- R" tt - (n - Bi/86)1, (22\
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With t expressed as Eq. (28), Eq. (26) after inte-
gration turns into

(B + B*). vr : t - 6. v{},i ))r,

where

B*=*[v?"xv6l (31)

can be called the "effective poloidal field", and rpn is
the poloidal flux of the helical field:

or2 :
V,=;(lBxBl.es)1

:4G,8,1,.
Bt

Identity

(E'vpr. vy))e : -B*.vt (33)

must be used to get Eq. (30) from F;q. (26).
As a result, the solution of the Eq. (25) looks like

(34)

and i must be found from the two-dimensional equa-
tion (30), which is much simpler than Eq. (25).

6. General Analytical Solutions for a Stellara-
tor

From Eqs. (15)-(17) the easiest is the Eq. (17)
for Hamada angle Qr. It corresponds to MDE (25) with
y : L and 2nxr: - V'(V)0". It follows from Eqs.
(28) and (30) that in this case !': - 6r . Vxr, and

(3s)

where integration is performed along the transverse
cross-section of the averaged magnetic surface, p is the
unit vector tangent to this contour.

For basic coordinates j + O, but it makes rather
small contribution into the oscillating part of Eq. (3a).
Then

(30)

(32)

with

It is easy to get similar expressions for Boozer co-
ordinates, which are very close to basic coordinates.
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