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Abstract
Observation of the complete suppression of integral effect of Pfirsch-Schhiter current in Heliotron

E plasmas is reported. Poloidal magnetic field was measured to control the plasma boundary position.

We found that pressure-induced plasma shift, an observable characteristic of Pfirsch-Schliiter current,

depends strongly on the initial position of magnetic axis. When it was moved by the vertical field inside

the torus, finite-B shift became smaller. Complete suppression of finite-B shift was achieved in a deeply

inward shifted configuration:7 cm from the standard position R^,r":2.20 m. Observed effect is ex-

plained by MHD equilibrium theory for planar circular axis stellarator plasma with a high magnetic hill
and deep inward shift.
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1. Introduction
In toroidal magnetic systems, such as tokamaks

and stellarators, magnetic field is inevitably inhomo-
geneous. When plasma is maintained in equilibrium in
such a field, a dipole current appears to compensate the

toroidal drift of charged particles. This pressure-in-

duced current, flowing along the whole system, is called

Pfirsch-Schltiter (PS) current. It becomes larger with in-
creasing plasma pressure, which finally puts the upper

limit for B. This limit, B"o, is related with a strong shift

of magnetic axis (known as Shafranov shift) produced

by the vertical field of PS current [1]. Progress in oper-

ation with a finite-B plasma allowed to study it in stel-

larator experiments also [2,3].
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In tokamaks the standard method to measure the

plasma shift is based on magnetic diagnostics. It was

logical to apply the same technique in stellarators. Nec-

essary theory was developed in Ref. [4], and then

method of Ref. [4] was realized [5]. At the same time

we found unexpected strong dependence of the finite-B
plasma column shift /p on the geometry of initial va-

cuum configuration.

Obviously, this experimental observation was an

evidence of PS current suppression in inward shifted

configurations. There were theoretical indications that
such suppression might be possible in conventional stel-

larators [6,7]. But existing theory was insufficient to
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explain our first results. The knowledge was rather
limited: two numerical examples [1,6] and model ana-
lytical expression for PS current [6,7]

. z?'(p) /. ^^---.-. z(p\ \ -*':ffi (l + Bzv"e)=f 
) 

coso' (1)

where p is the plasma pressure, .B is the magnetic field
at the axis, Z"(<D) is the vacuum magnetic hill value,
/(p) is the shift of a magnetic surface of minor radius
p, and 0 is the poloidal angle. This expression is good
for shearless systems, but it is not justified for stellara-
tors with large shear like Heliotron E. Till recently

[8,9] these results of [1,6] were neither confirmed, nor
refuted. Now it is known that proper shaping of mag-
netic surfaces could provide a considerable reduction of
PS current in stellarators [10,11]. But it was shown for
configurations evidently different from those produced
in Heliotron E.

2. Experiment on Complete Integral
Suppression of Pfirsch-Schliiter Current

Heliotron E device is a stellarator/torsatron toroi-
dal device with a large shear of the vacuum rotational
transform: ro:0.5, 4:2.8. The major radius is

h:2.20 m and typical minor radius is b:0.21 m. An
4:2 helical coil with m:t9 helical field periods can
produce a toroidal magnetic field B up to 2 T at the
axis. We can control the vacuum configuration by
changing the total vertical field B, produced by poloidal
coils in the range -0.2227 <fr<-0.15189, where

ff:8"/B [12]. Then we get configurations with mag-

netic axis positions 2.10 m< Ru*1"<2.28 m at 8:1.9 T.
Figure 1 shows the poloidal cross section of vacuum
magnetic surfaces of strongly inward shifted configura-
tion with R*;,:2.13 m.

The experiments were performed at B:t.9 T.
Currentless target deuterium plasmas were produced
with the second-harmonic electron cyclotron resonance

heating (ECRH) by 300 to 400 kW of rf power from
106 GHz gyrotron, without ohmic transformer. The
line averaged density -n" rose to (1.5-2.0)x1013 cm-3,

then 28'and 11'co-injecting neutral beam injectors
were turned on. Up to 2 MW of hydrogen neutral beam
power at energy of 24-26 keV was thus injected almost
perpendicularly into the torus. Deuterium gas puffing
was used to raise the density further during injection to
reduce shine through loss. The typical plasma parame-
ters during the discharge were: 4:(3-7)xl.0r3 cm-3,

40:(400-800) eV, {o:(400-700) eV.
Finite-B plasma boundary shift /8, the part of A

due to plasma-generated magnetic field, was measured

-o.?

-o.4
r.8 2.O 2.2 2.4 2.6 2.8
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Fig. 1 Vacuum magnetic surfaces of Heliotron E configu-
ration with inward shifted magnetic axis (rR",,"=2.13
m, /R",,"=-7 cm), where complete suppression of
Pfirsch-Schliiter current was observed. The sur-
faces are produced by the helical coil (l=2, m=191,
main vertical coils and auxiliary vertical (AV) coils.
Magnetic surfaces rotate helically along the toroidal
direction.

magnetically as described in [a, 5]. We have used one
pair of poloidal magnetic flux loops (rlr{oops) which
are set in the equatorial plane and form a saddle loop
to determine the "ribbon" averaged vertical field. One
pair of cosine coils, separated by a half helical period,
was also used. These two signals and the measured net
toroidal current allow to derive the shift /p, which was

nearly proportional to the dipole moment of PS current

[13]. Diamagnetic volume averaged B was used as a

measure of plasma pressure.

Figure 2 shows the measured values /p, fl plasma

current and poloidal magnetic diagnostic signals in the
discharge in strongly inward shifted configuration
(R*6:2.13 m, /Ru*,r:R*i,-&:-7 cm, see Fig. 1).
The diamagnetic fl as well as the stored energy, in-
creased during neutral beam injection to 0.2L"/" and 13

kJ. The net toroidal plasma current increased from zero
to 3 kA in the direction of co-injection mainly due to
the neutral beam driven current. The line averaged
density increased to 7X1013 cm-3. We observed the fi-
nite amplitude signals in the cosine coils and the qr-

loops, although Pfirsch-Schltiter current was integrally
completely suppressed as indicated by almost zero
plasma shift, Fig. 2(a).

On the other hand, in initially outward shifted He-
liotron E configurations we could detect "normal" fi-
nite-amplitude fields due to Pfirsch-Schltiter current.
The finite-B plasma shift vs. diamagnetic B are shown in

Ro'ts=2.13m
(ARo,rs=-7cm)
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B = 1 .9 T, Raxis = 2.13 m (ARaxts = -/cm), #74862
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Fig. 2 The wave forms of plasma parameters of the dis-
charge with the complete suppression of Pfirsch-
Sch[iter current (R"","=2.13 m): (a) finite-B plasma
boundary shift, (b) volume averaged B measured
by diamagnetic loop, (c) net toroidal plasma cur-
rent, (d) first Fourier harmonic of the poloidal mag-
netic field measured by the cosine coil, (e) magnetic
flux signal of rp-loops.

Fig. 3 (/R"*,,:*3 cm) in configuration with R*r":2.23
m. In this case, as in other typical regimes with a small

l/R*^|, we observed relatively large "natural" outward
pressure-induced plasma shift during the neutral beam

heating (2 MW).
Our final goal was to verify the prediction of MHD

theory [8,9] that in Heliotron E we can rcalize an

exotic regime with overcompensation, when increasing

---o- . Raxis=2.23 m, F. = - O.t74, #74916
+ : Raxis=2.18 m, F* = - 0.192, #74219
# : Raxis=2.13 m, 0* = - 0.209, #74862

p -r 1l * R' - -n)1a, #11)71. r\aYts-!. r4 rrr, H -

0.2
0 0.1 0.2 0.3

diamagnetic P (q")

Fig.3 Measured finite-B plasma shift at various initial po-
sitions of the magnetic axis. Each curve represents
one plasma shot. Shown is dependence o'f Zp on
diamagnetic B in outside shifted configuration with
R",,"=2.23 m, in slightly inside shifted configuration
with r9"","=2.18 m, in configuration with R.*,"=2.13
m, where almost complete compensation of
Pfirsch-Schhiter current was observed, (plasma
boundary was insensitive to plasma pressure), and
in another deeply inward shifted configuration with
R^*,"=2.12 m, where pressure-induced shift was
"reversed". Dotted lines show average behavior of
/B as function of B.

plasma pressure moves plasma inward. And, indeed,

when the magnetic axis was shifted deeply toward the

major axis (Ru*r":2.12 m,./Ru,;":-8 cm), we observed

this "anomalous" behavior of plasma column during

neutral beam heating, Fig. 3. Figure 3 summarizes mag-

netically determined finite-B plasma shift as a function
of diamagnetic B in the magnetic axis scan (R"6 scan)

experiments.

The measured equilibrium plasma shift was

strongly dependent on the initial magnetic axis position

&*i,. It is unusual for conventional stellarators, however

it can be explained from the first principles of MHD
equilibrium theory. In stellarators there are two sources

of inhomogeneity of the magnetic field: toroidicity and

helical field. Accordingly
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ln l:2 stellarator with a shear [8], we can control this
ratio jr/jn, but rather strong vertical field B, is neces-

sary to get substantial effect. At the same time, in a real
device the acceptable range of B, is determined by the
natural geometrical constraints: being shifted by Br,
plasma should not touch the wall. This restriction leads
to the conclusion [8] that experimental efficiency of PS

current reduction must be characterized by the value
,o:qmb/R. The larger this value, the stronger sup-
pression can be achieved by inward shifting of the va-
cuum magnetic axis. Heliotron E with of:4.3 turns out
to be a unique device: in other stellarators ao:I.6
(ATF), 1.5 (LHD), 1.3 (CHS) or smaller. Such a pro-
nounced difference is the reason why the effect shown
in Fig. 3 could not be seen in other stellarators or in
calculations with a typical choice of parameters.

3. Conclusion
We have made the unique observation of the com-

plete integral suppression of Pfirsch-Schltiter current
with magnetic diagnostics in a finite-p stellarator
plasma in Heliotron E and even more exotic "reversed"
pressure-induced plasma shift. These effects are gener-

ally explained by MHD equilibrium theory for stellara-
tor toroidal plasma with a strong magnetic hill and deep

inward shift.
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