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Abstract
A technique by which magnetic islands in the vacuum field of heliacs may be controlled is

presented' The method is based upon the construction of quadratic flux minimizing surfaces, which are
defined as surfaces that minimize a suitable quadratic flux functional. The technique for manipulating
the magnetic islands is based upon a quickly computed measure of the island width and phase. A major
island chain in the standard configuration of the heliac in operation at the Australian National Univer-
sity, H-1NF, has been eliminated using the method. It was shown that variation of the vertical coils onlv
enables subtle control of the island content.
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1. Introduction - Magnetic lslands
For non-axisymmetric devices such as stellarators,

magnetic islands will naturally occur even in the vac-
uum configuration. It is clear that magnetic islands with
large width will deteriorate plasma confinement. Also
important for plasma confinement is the phase of mag-
netic island chains. The phase of the island chain was

important with respect to the possibility of self-healing
of magnetic islands [1]. Also, for the reversed shear to-
kamak configurations, the relative phase of the double
island chains associated with rational surfaces may be
important with respect to the reconnection of magnetic
field lines and the flattening of the rotational transform
profile [2].

Generally, one may calculate the width of mag-
netic islands from the magnitude of the resonant per-
turbation and the magnitude of the shear at the rational
surface. This calculation exploits the Hamiltonian char-
acter of toroidal magnetic fields. This procedure

* Corresponding author's e-mail: stuart@ ptl0 l.naka.jaeri.go.jp

requires the given magnetic field to be known as a small
perturbing field superimposed on an integrable field.
To determine the phase of the island chain, it is re-
quired to know the sign of the perturbation and the sign
of the shear.

With these ideas implicit in the following discus-
sion, this paper will present a technique by which the
magnitude and phase of magnetic islands in stellarator
vacuum fields may be controlled. Results from the he-
liac HI-NF in operation at the Australian National
University indicate that subtle control of the islands is
possible using by small variations of the vertical field
current coils. This technique is an alternative to the
method of Cary and Hanson [3] for eliminating island
chains from vacuum configurations,

The basis of the method is the definition of quad-
ratic flux minimizing surfaces. These are surfaces which
generalize the concept of flux surfaces. During the
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construction of these surfaces, a natural efficient pa-

rameter that indicates island width and phase is deter-

mined.
In section 2, quadratic flux minimizing surfaces are

defined. An important quantity that arises is the action

gradient function defined on rational rotational trans-

form surfaces. In section 3, it is shown how the action

gradient function may be used to obtain a quickly com-

puted parameter that indicates island width and phase.

This parameter may be used in an optimization routine

that determines preferred vacuum magnetic field con-

figurations. Some concluding remarks are made in sec-

tion 4, and some indications of further applications of
quadratic flux minimizing surfaces are given.

2. Ouadratic Flux Minimizing surfaces
Introduced by Dewar et al. l4l, quadratic flux-

minimizing surfaces are a natural generalization of flux

surfaces. Quadratic-flux minimizing surfaces are sur-

faces that minimize the quadratic-flux functional. Given

field B in toroidal coordinates (p, 0, /), with the con-

travariant components U,Bo and N, the quadratic flux
functional is:

fB?
az: | ;;do (1)

J fLWn

where An - A. n, with z the unit normal to the trial
surface f, and where C is an auxiliary divergence free

field everywhere transverse to the surface f .

The choice of C is arbitrary, but typically we use C
: V0 x V/. With this choice C is both parallel to the

radial basis vector ep= dor and related to the action
gradient defined on periodic curves [5].

On allowing the surface f to vary, using the calcu-

lus of variations, Dewar et al. l4l obtain the Euler -
Lagrange equation required to make the first order
variation of the quadratic flux functional equal to zero,

6,p2- 0'

B,.Y v: 0, (2)

where B/=B - tt C and 2= Bn/Cn We call B, the

pseudo-field and v the action gradient for surface s.

We make a few comments about the quadratic flux
functional and the minimizing surfaces. We only con-
sider rational rotational transform quadratic flux mini-
mizing surfaces. If the trial surface f is actually a flux
surface, then B" : 0 and the quadratic flux functional is
also zero. In this case, the quadratic flux minimizing
surface is simply the flux surface. In such a case, the

quadratic flux minimizing surface is comprised of a

family of periodic field lines. Also, the action gradient

Fig. 1 Manipulation of the (5,3) magnetic island in the va-
cuum field of H-1. On the left is the standard con-
figuration labeled Fig. 1(a). The middle plot, labeled
Fig. 1(b), and the right plot, labeled Fig. 1(c), are ob-
tained by variation of the currents in the vertical
field coils.

function r is everywhere zero on the surface.

More generally, Eq. (2) shows that v is constant

along a pseudo field line and that the solution surfaces,

with rational rotational transform, are comprised of a
family of periodic pseudo-field lines. Pseudo orbits are

defined as the integral curves of the pseudo magnetic

field 8,. To locate the periodic pseudo-orbits we speci-

fy 9 and to search in the two dimensions (p, rt) for a

fixed point of the m-th iteration of the pseudo Poin-

car'e return map, P". The pseudo Poincar6 return map

is computed by following the pseudo magnetic field
lines around toroidally for one toroidal period. If the
action gradient vanishes on all good flux surfaces, the

two dimensional search is reduced to a one dimensional

search [5].
It is the properties of the action gradient function v

which are of primary interest for the present discussion.

As examples, three vacuum magnetic field configura-
tions of H-1NF are presented in the following sections

of this paper. These are shown in Fig. 1(a), Fig. 1(b)
and Fig. 1(c). A quadratic flux minimizing surface of
periodicity type (m, n) : (5, 3) was constructed for
each of these configurations. Shown in Fig. 2 is the be-

havior of v for each of the surfaces. Consistent with the

existence of 2m X or O points are the 2m zeros of v.

Stellarator symmetry [6] implies that the angular loca-
tion of max (lul), cannot rotate, though it may vary
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Fig.2 Behavior of y with 0 for the (5,3) surface for the
various current configurations. The solid line is the
y obtained for the configuration displayed in Fig.
1(a), the dotted line corresponds to the configura_
tion shown in Fig. 1(b) and the dashed line corre-
sponds to the configuration shown in Fig. 1(c). The
phase locking of I is clearly indicated as all three
lines pass through zero for 0 = O.

slightly. We define 0* as the angle at which lzl achieves
its maximum. Once 0* has been located for a particular
current configuration, we may consider it fixed as we
make small variations of the currents. For each configu-
ration, r,(0) : 0, which confirms the phase locking of 4
and 0* =0.31.

3. Control off Magnetic lslands
Starting with the standard configuration shown in

Fig. 1(a) we define a measure, l, of the size of the (ln,
n) island and its phase to be the value of ? at this angle,
f : u(tr). Note that the scalar parameter y* contains
information regarding the size of the island chain from
the magnitude, lfl.We use the fact that the (m, n)
island has vanished if y* is zero, and the phase of the
island chain is related to sgn(r*). An intuitive under-
standing of the parameter rf is that it is related to the
amplitude and phase of the resonant perturbation re-
sponsible for the island chain. We will show that mag-
netic islands may be manipulated by variation of the
vertical field coil currents. We consider the function

where rf; is to be set, indicating the desired island size
and phase (magnitude and sign of rf;respectively).

To firstly remove this island chain, we set {: 0.
The configuration that minimizes A, and thus mini_
mizes the amplitude of the resonance harmonic produc_
ing the island, is determined by a numerical search in
the two-dimensional, vertical-field coil current space.
By varying the vertical fields, it was possible to reduce
z4 by several orders of magnitude. A poincar6 plot of
the resulting magnetic field is shown in Fig. 1(b) and
the full quadratic-flux minimizing surface was con-
structed. Here we see the (5,3) island chain has become
negligible in width. The action gradient (shown in Fig.
2 as the dotted curve) indicates that the family of peri-
odic pseudo orbits is degenerate in action and the
quadratic- flux minimizing surface has reduced to the
periodic flux surface.

The island chain may be recreated, but with the X
and O points having swapped their location, by setting

6:0.4 and again minimizing A. Apoincar6 section of
the optimized configuration is shown in Fig 1(c) where
we see the (5,3) island chain has changed phase by
180'. The behavior of y is shown as the dashed curve in
Fig.2.

We observe that for this configuration region, the
vertical field coils provide a means to ,fine-tune' the
configuration. Such results indicate the flexibili8 of the
stellarator design.

4. Conclusion
From the construction of quadratic flux minimizing

surfaces, a natural parameter that quantifies the size
and phase of magnetic islands emerges. This parameter,
v*, is convenient for use in computational optimization
routines as it is efficiently calculated given the magnetic
field in toroidal coordinates. A numerical search
quickly locates the optimal current settings for H-INF
to remove a major island chain. As the phase informa-
tion of the island chain is contained in the action gra-
dient, the search for optimal settings may be extended
to locate configurations with non-zero width islands of
a desired phase. This is important in context of the self-
healing phenomena results recently reported.

Further work using quadratic flux minimizing sur-
faces is presently underway at developing a robust mag-
netic coordinate algorithm. As quadratic flux minimiz-
ing surfaces automatically reduce to flux surfaces if the
flux surface exists, coordinates constructed from quad-
ratic flux minimizing coordinates may be designed to
agree with straight field line coordinates. Also, quad-
ratic flux minimizing surfaces form a convenient set of

A: (r - 152 (3)
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surfaces to construct a nearby integrable magnetic field

to any given non-integrable magnetic field [7].
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