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Abstract
In a dissipative model of plasma equilibria in stellarators the viscous forces and inertial forces are

added to the force balance of ideal MHD. This model allows one to describe a rotating equilibrium
which is of interest in the theory of H-mode confinement. Existence of solutions can be proven using
the methods of viscous hydrodynamics. Uniqueness only occurs at small Hartmann and Lundquist num-
bers. The viscous damping is evaluated numerically showing that optimised stellarators of the Helias
type exhibit smaller poloidal damping than standard stellarators. Island formation in the boundary re-
gion may inhibit the onset of rotation since enhanced viscous damping or magnetic pumping arises in
the neighbourhood of islands.

Keywords:
stellarator, dissipative equilibrium, rotation, viscous damping

The standard method in computing 3-dimensional
stellarator equilibria is to solve the force balance
jx B:Y p either by looking for an extremum of the en-
ergy integral or by applying Spitzer's iterative scheme
jn*rX Bn:Y p; Y X B^*r: pojnr, n:0,1,2.... However,
there exists no proof of convergence and since the par-
allel plasma current tends to develop singularities [1] it
is to be suspected that the procedure does not converge
in general. From Ohm's law with finite resistivity it fol-
lows that also the electric potential becomes singular on
rational magnetic surfaces which leads to an infinite
shear flow of the E x B velocity. These singularities will
be cut off by finite plasma viscosity. Furthermore, ro-
tating plasma equilibria, which are of interest in the
context of H-mode confinement cannot be computed in
the ideal MHD-model. The Navier-Stokes model of
plasma equilibria

Y.(pv:v+ n(v)):-Yp+ jx B (1)

together with Ohm's law -Vr* vXB:qj and,y .(pv)
:S(t), p:p(p,T) removes these difficulties. z(r) is the
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Braginskii viscous tensor, which is linear in the deriva-
tives of the velocity v. An alternative to the equation of
state is the adiabatic law I' V(ln(p/pr)):0.

The iterative scheme Bn - (j,+t,vn*,) - B,*,
starts with a given magnetic field and computes the pair
An+yvn+l) and a new magnetic field B,*,. The conver-
gence is equivalent to the existence of a fixed point in a
Banach space of vector fields fiv). The method is well
established in the theory of viscous hydrodynamics [2,
3] and has been applied to magnetohydrodynamic flow
by Gunzberger et al. [a] and Spada and Wobig [5]. In
this model there are two dimensionless parameters, the
Hartmann number H: BL(o/ ry)t/2 and the Lundquist
number R^: ouL (o: conductivity, q: viscosity, rz :
reference velocity, L : length scale) and it can be
shown that any solution is unique if the Lundquist
number and the Hartmann number are small enough.
At large values of F1 and R. bifurcations and multiple
solutions may occur. This is similar to hydrodynamic
flow where bifurcation occurs at large Reynolds
numbers. The afore-mentioned theories are still incom-
plete since plasma density and temperature are not
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(4)

computed self-consistently' With given density and con-

vective velocity the heat conduction equation yields a

temperature ? and using the equation of state,

p: p(p,T), this procedure provides us with a new den-

sity. In this extended model the equilibrium is a fixed

point of the map (v,,in,Pn) ' (vna1,in+t,P-*r). In the

theory of gas dynamics the mathematical analysis of

compressible flow is given in ref. [6]. The heat conduc-

tion equation introduces another reason for bifurcations

which is due to the non-linear radiation function L,(T).

A necessary condition for the existence of rotating

equilibria is a finite particle source S(r) * 0 and a

radial plasma diffusion. Without a particle source

(S:0) and zero velocity v,:0 normal to the plasma

boundary the work done by viscous forces and the

Ohmic dissipation is zero which implies v = 0 and

j = 0. The dissipated energy of the system is

wlr,il: 
J" (r' 

o ' tv(v) * ni')a'x

From the force balance, Ohm's law and the boundary

conditions we obtain W[% /l :0, which yields the re-

sult above. In order to get this result use of the full

Braginskii viscous tensor including shear viscosity has

to be made. Only in this case the viscous operator

Y . n(v) is positive definite.

Given a rotating equilibrium, a surface-averaged

force balance can be established which elucidates the

various spin-up mechanisms - Stringer spin-up and

turbulent Reynolds stresses - and balances these driv-

ing forces against the viscous damping forces. The com-

plicated structure of general stellarator equilibria is

overcome by using the Hamada coordinate system [7]'
In the one-fluid model, averaging the force balance

over a pressure surface yields the two equations

<j.V' (pv:v* z(v))> :0,

< B.V '(pv:v * z(v))> : 0, (3)

Viscous damping parallel to the plasma current

and the magnetic field lines is balanced by surface

averaged inertial forces. Since viscous forces and iner-

tial forces in rotating equilibria are small compared to

the pressure gradient and the Lore tz forces we have

B'Yp-O, magnetic surfaces and pressure surface

nearly coincide. Using this property we may approx-

imate the magnetic field by the field of an ideal

equilibrium and introduce the Hamada coordinate

system to evaluate the surface averaged viscous forces.

In terms of the poloidal base vector ep the viscous

damping forces are

(eo'V 'n) : <(p,,- pt)eo'4i>

<B'V 'n): <(pu- pt)A'Lj,, (3)

This formulation holds for all regimes of collisionality;

in the collisionless regime the anisotropy of the pressure

must be computed by neoclassical theory, in the colli-

sional regime it can be found from the Braginskii vis-

cosity. In this regime it is identical with the magnetic

pumping effect.

The coefficients are

/ VR\2 / VR\2q:.(%';)r; q:.tu';,l '
_ t v.B\ / -. Y4\,cL:<leo'B,ltr'r), (s)

z is the ion-ion collision time. The plasma velocity is in

lowest order given by

v.: -E(tp)eo+ A(L|))B (6)

Viscous damping of rotation depends on the de-

tails of the magnetic field and numerical evaluation

shows significant differences in various stellarator con-

figurations [8]. These geometrical coefficients are large

in standard stellarators of the l:2-type, however they

are appreciably smaller in optimized stellarators of the

Helias type. Therefore rotating equilibria may be more

easily obtained in optimized stellarators than in conven-

tional stellarators.

It is shown that the presence of magnetic islands

enhances viscous damping up to a factor of two in the

neighbourhood of these islands. Magnetic islands have

been observed in the Wendelstein 7-AS experiment

and it has been shown how the attainment of H-mode

confinement in this experiment is related to the absence

of magnetic islands [9].
Poloidal rotation with shear flow is one of the key

elements in the theory of H-mode confinement in toroi-

dal systems. There are various driving forces which may

excite poloidal and toroidal rotation, Stringer spin-up'

( i*."";j):"'(e?)(",)

(2)
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Fig. 1. Poloidal viscous coefficient Q in Wendelstein
7-AS, Wendelstein 7-X and an axisymmetric device
(Tore Supra). In W7-X, poloidal damping is reduced
to the level of an axisymmetric configuration, only
close to the boundary does the presence of mag-
netic islands tend to increase poloidal viscous
damping.

W 7-AS Poloidal viscous coefticient q

turbulent Reynolds stresses and lost orbits. In Refs. [7]
and [8], the surface-averaged inertial forces have been
analysed explicitely showing the specific role of the
radial diffusion losses. It is the Coriolis effect which
couples diffusive velocity into poloidal rotation. The
dominating term in the Coriolis forces is the Stringer
spin-up, either driven by classical and Pfirsch-Schltiter
diffusion or by anomalous diffusion. In case of a turbu-
lent plasma the inertial forces in Eq. (2) are to be
modified by additional turbulent Reynolds stresses

which especially in the initial phase of rotation may
play a decisive role.

The results described above only consider the li-
near phase of plasma rotation - assuming that such an
equilibrium exists. In the fully developed rotating state
the shear flow reduces the anomalous losses and thus
the inertial driving term. Viscous damping in the
plateau and long-mean-free-path-regime is also re-
duced by plasma rotation. However, the present linear
analysis is useful for comparing the influence of mag-
netic geometry on viscous damping. Reducing the po-
loidal and toroidal variation of B on magnetic surfaces
reduces the magnetic pumping effect (or viscous damp-
ing) which balances the classical or anomalous driving
terms. It has been shown that optimization of stellarator
configuration with respect to Pfirsch-Schli.iter currents
and neo-classical diffusion also reduces poloidal viscous

damping to the level of axisymmetric configurations.
Therefore in Wendelstein 7-X and related configura-
tions a significant H-mode effect inay be expected.
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Fig.2. Poloidal viscous coefficient in W7-AS in the regime
r>0.5. The upper curve shows the effect of the
r=5/9 island. Viscous damping in the neighbour-
hood of the island is enhanced by a factor of two.
Reducing the rotational transform slightly, shifts
the islands beyond the last closed surface. In the
two lower curves the plasma is affected neither by
islands nor by contact with a material limiter. This
is the region where in W7-AS H-mode-like confine-
ment has been observed.
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