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Abstract
By studying the a, tp, g1 dependence of ballooning mode growth rates in a Mercier-unstable equili-

brium case modelling the Large Helical Device (LHD) with a broad pressure profile, it is found that two

distinct topological types coexist - a topologically cylindrical branch and a topologically spherical

branch. It is shown that the "cylindrical" branch can be described by a ripple-expansion of the balloon-

ing equation, carried beyond lowest order in the number of field periods. However the "spherical"

branch cannot be found from such an expansion at any finite order. According to WKB theory, the cy-

lindrical and spherical branches give rise to quasi-discrete modes and continuum global modes, respec-

tively. The cylindrical branch disappears for the Mercier-stable peaked-pressure-profile LHD cases and

can thus be regarded as a finite-growth-rate interchange mode.
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The application of the 3D-WKB ballooning for-

malism[l] to a realistic stellarator equilibrium is a com-

putationally intensive task, and the formalism has only

recently been applied[2]. The case studied (B:a % at

magnetic axis in Table III of Ref.[3]) was essentially

LHD, but with a pressure profile chosen to be broader

than the one intended for normal operation. This

choice makes the equilibrium strongly Mercier un-

stable[4], thus ensuring that a rich spectrum of unstable

modes of low-toroidal mode number is available for
numerical study. It was found[2] that the WKB formal-
ism[l] predicted a global (quasi-)discrete spectrum in

good agreement with that calculated by the global

eigenvalue code TERPSICHORE, after painstaking

convergence studies were done for TERPSICHORE'

. Corresponding author's e-mail: robert,dewqt@ anu,edu.au

Nakajima[4] has also studied a case with a nar-

rower pressure profile that is only very weakly Mercier

unstable at 4 o/o 
B on axis, and enters a second region

of Mercier stability at higher B values. However, these

interchange-stable equilibria are found to be unstable to

a strongly localized ballooning mode. Since the margi-

nal stability surface for this instability is topologically

spherical in the reduced ray phase space, this mode be-

longs to the "broad unstable continuum"[1.].

In this paper we show that the 4 %-8, Mercier un-

stable "broad pressure profile case" used in the pre-

vious study[2] is also unstable to the continuum bal-

looning mode of Nakajima. Thus we have found a

O1998 by The Japan Society of Plasma

Science and Nuclear Fusion Research

108



Dewar R.L. et al., Discrete and Continuum Ballooning Modes in a Stellarator

physical case where a broad unstable spectrum and a
quasi-discrete spectrum coexist.

We label magnetic surfaces variously by the pa-
rameter s used in the VMEC equilibrium code, by the
enclosed poloidal flux2ntp, or by the inverse rotational
transform q = l/t [assuming 4(r) to be monotonic - in
the LHD case studied, q(0):2.3,4(1):0.881. Intro-
ducing straight-field-line poloidal and toroidal angles 0
and f, and a Clebsch potential a, constant on a mag-
netic field line, c = (- q0, we have B: Vo X Vg.

We change the coordinates on a magnetic surface
from (, e to d, e taking the domain to be the plane [1].
We assume the perpendicular-displacement stream
tunction to be given by q: qexp(iS/ e- iat), where
q(0, 1p, c) is assumed to vary on the equilibrium scale,
whereas the phase variation is taken to be rapid. The
frequency a: iy, where y is the growth rate, is assumed
O(1), which requires that S : S(o, r/). From the definition
of the wave vector, k:k"Ya*knYq= k"(Ya*1oYq)
where ko = 0S/ 0a and ko: 0S/ 0q.

Here the ballooning parameter 0o appears as the
ratio ko/ k". This parameter is angle{ike in the sense
that the periodicity properties of the ballooning growth
rate with respect to 0o are the same as those of equili-
brium quantities with respect to 0. i.e. the growth rate
is invariant under the operations T: a - a * 2n, 0o -
0o and P: a - a - 2nq(tp), 0t, - 0r, * 22. This
skewed symmetry, combined with magnetic shear, is
seen in Fig. 1, which was produced by solving the

Fig. 1 lsosurfaces of ballooning growth rate in the three-
dimensional phase space.

ballooning eigenvalue equation for parameters on a
three-dimensional grid in 0p, a, s space.

The eigenvalue equation is

&t# - (r-.tta2) cp:0, (1)

where ,il : lkl2/k2",t R, ,1t = -zp(A),/ rc, 8 x k/
B2ko, and ,,,tis an inertia factor. Here f = L/B.y0is
the Jacobian factor, p is the pressure and r the field-
line curvature.

Both types of mode we wish to study can be stu-
died using the ballooning equation, but have the follow-
ing distinguishing features (for intermediate growth
rates): (1) the interchange branch has growth-rate iso-
surfaces that are "topologically cylindrical", whereas
the ballooning modes have "topologically spherical"
isosurfaces; (2) the eigenfunctions for the ballooning
branch are localized to a few field periods, whereas the
eigenfunctions for the interchange branch are more ex-
tended; (3) the local growth rate for the ballooning
branch is at its maximum near 0o:0, whereas the local
grofih rate for the interchange branch peaks around
0*:7t.

To understand the nature of the interchange
modes we make an expansion in the inverse of the
number of field periods, M, to deive a ripple-averaged
ballooning equation that contains the interchange
branch but eliminates the ballooning branch.

The coefficients -s/, J{ and -t have a slow depend-
ence on 0, including "secular terms" in 0 - 0u, and, a
2n-peiodic dependence on the rapid helical variable
u= ME - l0,where M:10, l:2in LHD. We thus use

a two-scale approach in which the derivative along the
field lines becomes

daa
de:Ae@q-t) au. e)

We expand g in inverse powers of Mq - /. From the
solubility condition for q{z) at O(Mo) we find the
ripple-averaged ballooning equation

g 11-1-\ ' ddo) I _
do t\ .t / do 1 (@) - (-ry) 

") do):O, (3)

where (. ) denotes an average over one period in u,

leaving only 0 dependence, as in the axisymmetric case.

When the TERPSICHORE normalization factor

[2] was used for ,,tS the leading order ripple-averaged
approximation given by Eq. 3 reproduced the beha-
viour of the interchange branch in a qualitatively cor-
rect fashion (i.e. being maximum at 0,,: n), but if the
more usual incompressible MHD ./ was used it was
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1.0

0.0

found that the ripple expansion had to be carried to

next order (see Fig. 2). Since this expansion averages

out all d dependence it can never reproduce the bal-

looning branch, which is thus inherently three-dimen-

sional. We conjecture that the singular nature of the

continuum eigenfunction may make the ballooning

branch less dangerous for anomalous transport.
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Fig.2 Contours of ballooning eigenvalue crr2 calculated (a) by solving Eq. (1). then averaging over d, and (b) using Eq. (3),

plus the next order correction.
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