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Abstract
The Large Helical Device (LHD) has a flexible coil system making various vacuum configurations.

The characteristics of such vacuum configurations are basically expressed in terms of toroidally bended
corresponding straight helical configurations. The MHD physics of finite P LIHD plasma is understood
from the competitive or synergetic relation between helicity and toroidicity. The former comes from the
vacuum configurations and the properties still remain in the plasma periphery even for high B equilibria.
The latter is brought about by the essentially axisymmetric large Shafranov shift, which is strongly in-
fluenced by the toroidal current conditions and pressure profiles, and such effects become significant in
the plasma core region as B increases. Throught the local and global properties of the finite p MHD
equilibria in the planar axis LHD vacuum configuration, the ideal MHD stability of interchange and bal-
looning modes is addressed.
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1. Introduction
The Large Helical Device (LHD)[l] has a flexible

coil system, i.e., one pair of two helical coils, three pairs
of two poloidal coils, and ten coils making an (m/n) :
(/l'1 tairly large magnetic island that acts as a Local
Island Divertor (LID)[2]. Each helical coil has such in-
dependent current feeders that the coil current can be
fed in a balanced or unbalanced manner. Also, each

helical coil has three multiple layers with independent
current feeders, which is used to change the minor
radius of the current center of helical coils. The poloi-
dal coil system can control the vacuum magnetic axis
shift, the shape of the poloidal cross sections, and so

on. Such the flexible coil system creates four types of
typical vacuum configurations making the relatively low
rotational transform t near the magnetic axis, which
leads to a large Shafranov shift or Pfirsch-Schliter cur-
rent even for fairly low B values. In contrast with it,
both the Pfirsch-Schliiter current and the bootstrap cur-
rent are significantly reduced in W7-X[3] and hence

the properties of the vacuum magnetic field still remain
in whole plasma region for fairly high B values. Thus,
such the flexible coil system and the large Shafranov
shift of LHD give us an absolutely contrastive concept
to W7-X as plasma confinement device. In this paper,
we will concentrate our attention on one of the key
issues of plasma performances, namely, the ideal MHD
stability of the MHD equilibria in the L/M : 2/L0
planar axis vacuum configurations without LID through
the understanding of the vacuum configurations and the
MHD equilibria.

In Section 2, the characteristics of the L/M: 2/ I0
planar axis vacuum configurations are described. The
characteristics of the finite B MHD equilibria in such
vacuum configurations are given in Sec. 3 including ef-
fects of pressure profile and net toroidal current. Sec-

tion 4 is devoted to the characteristics of the ideal
MHD stability in such MHD equilibria, where the
properties of interchange and ballooning modes are
mainly examined. The summary is given in Sec. 5.
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2. Characteristacs of Vacuum Gonfigurations
'fhe L/M: 2/10 planar axis vacuum configura-

tions are examined. The characteristics of such vacuum

configurations are basically expressed in terms of toroi-

dally bended L/M : 2/10 straight helical configura-

tions, so that such vacuum configurations have the clear

separatrix magnetic field lines (4- M/L: 5), the stel-

larator-like magnetic shear, and the magnetic hill near

the periphery.

By the control of the poloidal coil system, the

magnetic axis shift and the shape of flux surfaces are

changed keeping the distribution of the field strength

almost unchanged. Since the toroidal magnetic field is

inversely proportional to the major radius, the vacuum

magnetic flux surfaces shift to the outside of the torus.

Thus, the inward shift of the vacuum magnetic axis can

restore straight helical-like properties, and the outward

shift enhances toroidal effects. By the inward shift of
the vacuum magnetic axis, the equilibrium beta limit in-

creases, the magnetic hill becomes high, and the orbits

of deeply trapped particles in helical ripples become

better. The outward shift makes the opposite proper-

ties.

3. Characteristics of MHD Equilibria
The characteristics of finite p MHD equilibria in

the L/M: 2/10 planar axis vacuum configurations are

examined by using VMEC code[4] under the fixed

boundary condition. Since the LHD plasmas have a

relatively high magnetic shear, the nested flux surfaces

are assumed to exist by neglecting the small magnetic

islands if any.

At first the currentless MHD equilibria are con-

sidered. The relatively low rotational transform t near

the magnetic axis in such planar axis vacuum configura-

tions allows a large and essentially axisymmetric Shafra-

nov shift or Pfirsch-Schliiter current even for fairly low

B values, which leads to a large deformation of both the

flux surfaces and the local pitch of the magnetic field

lines in the core region, almost leaving the distribution
of the magnetic field strength as it is in the vacuum

configuration[5]. Thus, the essential characteristics of
MHD equilibria are described by nearly axisymmetric

large Shafranov shift (toroidicity dominant) in the core

region and properties of the straight helical system (he-

licity dominant) near the periphery, resulting in the

competitive or synergetic states between toroidicity and

helicity. Such the large Shafranov shift can create the

averaged magnetic well in the plasma core region with
low magnetic shear and the resultingly enhanced stellar-

ater-likg magnetic shear in the periphery with the

averaged magnetic hill, leading to the situtation favor-

able for interchange modes. In contrast with it, the

large deformation of the local pitch of the magnetic

field lines leads to the disappearance of the local mag-

netic shear in the region with stellarator-like magnetic

shear, which is not favorable for ballooning modes[5].

By using the stellarator expansion under the high-B or-

dering (B- O (t )), the Shafranov shift A is expressed

by:

A,/_\ : d^(r): a4{ ''D/?\
A \', - dr 4P - o(\' P(4:T (1)

From Eq.(1), we can consider effects of the pressure

profile[6] and the net toroidal current[6,7] on MHD

equilibria.
Peaked pressure profiles make a large Shafranov

shift, leading to the deep averaged magnetic well in the

core region and to the situation that maximum pressure

gradient easily exists in the magnetic well region. It fol-
lows, however, that broad pressure profiles create the

opposite situation to that brought by peaked pressure

profiles. Note that the beam pressure profile of NBI
and deposition profiles by NBI, ECRH, and ICRF may

affect the pressure profile. Parameters of vacuum con-

figurations or MHD equilibria creating the large Shafra-

nov shift from the sense of Eq. (1) have a tendency to

bring about broad pressure profiles reducing the Sha-

franov shift from the aspect of particle orbits, and pa-

rameters making the Shafranov shift small have an op-

posite tendency. The experimental control of the pres-

sure profile may become important.

The net toroidal currents such as bootstrap cur-

rent, Ohkawa current, and ECRH-driven current affect

the Shafranov shift through the rotational transform t.

The bootstrap current in the t/ v collisionality regime,

the Ohkawa current due to co-injected NBI, and

ECRH-driven current increasing t reduce the Shafra-

nov shift, whcih leads to the shallow magnetic well in

the core region and weak stellarator{ike magnetic shear

in the periphery. As a result of it, MHD stability is

deteriorated. The bootstrap current in the plateau colli-

sionality regime, the Ohkawa current due to counter-

injected NBI, and ECRH-driven current decreasing t
enhance the Shafranov shift and are favorable for the

MHD stability. Note that the bootstrap current is

strongly affected by both vacuum configurations and

MHD equilibria themselves and that it is reduced by

the positive radial electric field when electrons and ions

exist in the l/ v and plateau collisionality regimes, re-

spectively[8,9].

76



Nakajima N., MHD Physics on LHD

4. Characteristics of MHD Stability
The ideal MHD stability is examined under the

fixed boundary condition. Current-driven modes in
LHD are stable when the net toroidal current is less
than about 300 kA (the net toroidal current due to
bootstrap current is about 200 kA). Thus, examinations
are concentrated on pressure driven-modes, namely, in_
terchange modes and ballooning modes. The ampli-
tudes of the interchange modes do not change so much
along the resonant magnetic field lines, so that the sta-
bilization effects due to the averaged magnetic well and
the magnetic shear are important for their stability. In
contrast with it, the amplitudes of the ballooning modes
change along the magnetic field lines, so that the local
magnetic well or hill and the local magnetic shear
become important for their stability, the fact of which
indicates that the ballooning modes can easily feel the
three dimensional structure of the MHD equilibria.

From the previous discussion about the vacuum
configurations and the MHD equilibria, it is found that
peaked pressure profiles and the currentless or ner ro-
roidal current decreasing t and the vacuum configura-
tion with outward axis shift are favorable for inter-
change modes. Figure 1 shows the interchange stability
diagram with equilibrium B-limit for currentless equili-
bria with the relatively peaked pressure profile: p :
P(1 - ,')'l7l.Q indicates the Mercier criterion and
the five level surfaces of Q are drown with /Dr: 0.1,.
The horizontal axis denotes the vacuum axis shift /rr.
The standard LHD configuration corresponds to zlu :
-15 cm. The standard LHD configuration is slightly
Mercier unstable, however, it is practically stable upto

Av (cm)

Fig. 1 Mercier stability diagram in the LHD configuration.
Dotted area corresponds to unstable region.
Dashed lines in this region are contours oI el7l.

the equilibrium plimit in the sense that in the region
near the Mercier marginal stability with 4<0.2 the
low-mode-number interchange modes are stable and
that the high-mode-number interchange modes highly
localize on their mode rational surfaces with the quite
small growth rates[7].

As is well know, the ballooning modes are more
stringent than interchange modes. Moreover, it is found
out by using high-mode-number ballooning mode anal-
ysis that ballooning modes inherent to three dimen-
sional (3-D) equilibria exist[6]. In the 3-D equilibria,
the eigenvalue of the high-mode-number ballooning
mode equation l" is a function with respect to q.t, 0r, and
a, where tp and a are the labels of the flux surfaces and
the magnetic field lines in the covering space, respec-
tively, and Q is the radial wave number comins from
WKB approxiamtion:

7: 1(8, 0r, a)

Note that ,1 becomes independent of a in axisymmetric
tokamaks. Therefore, properties of /. inherent to 3-D
equilibria appear throuth their a-dependence, which
comes from the local magnetic curvature because the
local magnetic curvature consists of two componenm,
namely, one part due to toroidicity and the other part
due to helicity. In the case of LHD, the locally unfavor-
able curvatures due to toroidicity and helicity are
superposed in the outside of the torus on the horizon-
tally elongated poloidal cross sections, however, on the
vertically elongated poloidal cross sections the locally
unfavorable curvature due to toroidicity is cancelled by
the local favorable curvature due to helicity leading to
locally favorable curvature even in the outside of the
torus. These properties of local magnetic curvature and
the disappearance of the local magnetic shear due to
the large Shafranov shift make high-mode-number bal-
looning modes unstable in the region with the stellara-
tor{ike global magnetic shear. Figure 2 shows both
schematic level surfaces of the unstable eigenvalue ,1, of
high-mode-number ballooning modes in (1l, 0u, a)
space (in the left column) and schematic positions
where finite-mode-number ballooning modes would
occur (in the right column) for tokamaks (in the top
row), for strongly Mercier unstable 3-D equilibria (in
the middle row), and for slightly Mercier unstable or
completely Mercier stable 3-D equilibria (in the bottom
row), respectively. In the axisymmetric tokamaks, the
level surfaces of unstable ,1 of high-mode-number bal-
looning modes are topologically cylindrical because L is
independent of a. In the strongly Mercier unstable 3-D
equilibria, such tokamak-like cylindrical level surfaces
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Fig.2 Schematic pictures of level surfaces of unstable

eigenvalues (in the left column) and positions

where ballooning modes occur (in the right column)

for three types of equilibria.

and spheroidal level surfaces coexist, and only spheroi-

dal level surfaces exist in the slightly Mercier unstable

or completely Mercier stable 3-D equilibria' The high-

mode-number ballooning modes with the spheroidal

level surfaces are inherent to 3-D equilibria. As is

shown in the right column of. Fig. 2, finite-mode-num-

ber modes leading to high-mode-number modes with

cylindrical level surfaces of. )u are considered to occur

outside of the torus without localization in the toroidal

direction. In contrast with them, finite-mode-number

modes leading to high-mode-number modes with sphe-

roidal level surfaces of,t are considered to localize in

the locally unfavorable region of the outside of the

torus. To confirm the properties of such ballooning

modes expected from the high-mode-number analysis,

the global mode analysis with finite-mode-number is

being performed by using CAS3D stability code[l0]'

where a strongly Mercier unstable equilibrium is used.

When the Fourier modes of the perturbation are se-

lected as centered in low toroidal mode numbers

(n<< M : 10), only interchange modes appear- For

medium toroidal mode numbers (n-M1, takamak-like

ballooning modes appear with only one dominant toroi-

dal mode number. As the toroidal mode numbers are

increased more and more (n) i4), ballooning modes

with both poloidal and toroidal mode couplings appear.

One example is shown in Fig. 3 where four group exist

with the different toroidal mode numbers, namely, from

Fig.3 Radial structure of the finite-mode-number
looning mode.

left to right, n: -56, -66, -76, and -86' From these

results, we can expect that the finite-mode-number

modes leading to high-mode-number modes with the

spheroidal level surfaces of the eigenvalues have quite

so large and many poloidal and toroidal mode numbers

that they localize in the toroidal direction as well as in

the poloidal direction.

5. Summary
The Large Helical Device (LHD) has a flexible coil

system making various vacuum configurations. In the

case of the planar axis vacuum configurations, the in-

ward shift of the magnetic axis creates more straight

helical-like properties, and the outward shift enhances

toroidal effects. The essential characteristics of MHD

equilibria of such planar axis vacuum configurations are

described by nearly axisymmetric large Shafranov shift

(toroidicity dominant) in the core region and properties

of the straight helical system (helicity dominant) near

the periphery. The net toroidal current and pressure

profiles mainly determined by the experimental condi
tions strongly influence on the Shafranov shift. Since

the Mercier stability of LHD is established by both the

magnetic well in the core region and stellarator{ike

magnetic shear near the periphery, the negative or zero

toroidal currents and peaked pressure profiles are fa-

vorable for the Mercier stability. High-mode-number

ballooning modes are still destabilized by the disappear-

ance of the local magnetic shear in the region with stel-

larator-like maguetic shear, even if the Mercier crite-

rion is satisfied. Those modes inherent to helical sys-

tems are expected to highly localize in the toroidal di-

rection as well as the poloidal direction and to
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become harmless by the kinetic effects such as the t3]
Finite Larmor Radius (FLR).To clarify FLR effects on
such ballooning modes, the dominant poloidal and to-
roidal mode numbers are being examined from global
mode analysis. t4l

The analysis of pressure-driven resistive modes is
another important issue of MHD physics. Since the t5l
magnetic hill always exist in the plasma periphery, the t6l
peaked pressure profiles are better for those modes as I7t
well as ideal MHD modes. Kinetic and dissipative ef-
fects on MHD modes will be continuously examined in tSl
order to clari! the MHD physics of LHD.
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