S2-2 原型炉概念設計の現状と課題 Status of conceptual design of JA DEMO and its issues

坂本宜照、原型炉設計合同特別チーム Sakamoto Yoshiteru and the Joint Special Design Team for Fusion DEMO

> 量研六ヶ所 QST Rokkasho

1. はじめに

原型炉設計合同特別チームでは、21世紀中ごろに 核融合エネルギーによる発電実証を目的とする 日本の原型炉概念設計を実施している。原型炉の 目標は、①数十万kWの電気出力、②実用に供し得 る稼働率、③燃料の自己充足性である。技術的実 現性のある原型炉概念設計の基本設計を実施す るため、ITER技術基盤、産業界の発電プラント技 術・運転経験、ITERやJT-60SAから見通し得る炉 心プラズマを想定することを方針とした。

2. 原型炉の基本仕様

核融合出力はダイバータ除熱性能と数十万kWの 電気出力の両立が見込める1.5GWに設定した。主 半径は、中心ソレノイドによる供給磁束でプラズ マ電流を安定に立ち上げられるようにするため、 ITERよりも大きい8.5mとした。これにより、定格 運転に向けた調整運転の段階においても核融合 出力1GWで2時間程度のパルス運転が可能な運 転柔軟性を確保している。図1に原型炉本体図と 基本仕様を示す。トロイダル磁場は6T程度で、定 常運転に必要な外部加熱電流駆動パワーを抑制 するために、プラズマ電流の約60%を自発電流で 賄うため安全係数を4.1に設定した。また、プラズ マ電流の定格値12.3MA、規格化ベータ値3.4、中性 子壁負荷1MW/m²にそれぞれ設定した。プラント 設備については、新たな技術開発課題を増やさな いため加圧水型原子炉の冷却水条件を採用し、既 存技術を流用できるようにした。各システムの基 本概念については、以降に述べる。

図1 原型炉本体図と基本仕様

3. 主要機器の概念

【超伝導コイル】

国内の専門家で構成された超伝導コイルWGで検 討を重ね、ベースライン仕様を策定した(図2)。 TFコイルは高さ20m、幅14mのD型形状の超伝導 コイル16本をドーナツ状に配置しトロイダル磁 場(最大経験磁場13T程度)を発生し、総磁気エネ ルギーは150GJである。設計応力はITERの667MPa を超える800MPaが必要であり、今後の重要な研究 開発項目の1つである。

	TFコイル	CSコイル	PFコイル
超伝導線材	Nb ₃ Sn	Nb ₃ Sn	NbTi
コイル本数	16	6	6~7
最大磁場	<14T	~13T	~13T
導体電流値 (導体構造)	< 100 kA (CICC)	> 40 kA (CICC)	> 40 MPa (CICC)
設計応力 (想定材料)	800 MPa (新高強度低温鋼)	500MPa (FM316LNH)	500MPa (FM316LNH)
卷線方法	9*フ*ルハ*ンケーキ型・ラ シ*アルプレート方式	パンケーキ型・矩形 導体	パンケーキ型・矩形 導体

図2 超伝導コイル設計のベースライン仕様

【ダイバータ】

TER技術基盤に基づく設計としているが、ダイバ ータ部への熱負荷分布と中性子照射分布を考慮 し、高熱負荷・低中性子照射部には銅合金の冷却 配管、低熱負荷・高中性子照射部には銅合金の冷却 配管を使用する設計とした(図3)。銅合金を使 用した冷却ユニットは、独立して交換できるよう な構造としている。

【増殖ブランケット】

ITER-TBM試験で予定されている固体増殖・水冷 却方式を採用した。構造材が占有する体積を抑え つつ堅牢性を改善できるハニカム構造に着目し、 冷却管から仮に漏水した場合にも増殖ブランケ ット筐体の堅牢性を確保し、燃料生産性を向上で きる設計を考案した(図4)。モジュール筐体は低 放射化フェライト綱(F82H)で製作し、筐体内部に は中性子増倍材(Be材)と三重水素増殖材(Li材) のペブルを装填し、熱の取り出しのために冷却水 配管(圧力15MPa、温度300℃程度、最大流速8m/s) を張り巡らせている。

図4 増殖ブランケット・モジュール構造

【遠隔保守方式】

ブランケットセグメントの上部を掴んで炉内から搬出する場合、不安定な「片持ち」にならないように、①上下両端をしっかり掴む機構を備えた エンドエフェクタ、②腕の長さを変えて集合体を 上下動させるテレスコピックマニピュレータ、③ トーラス方向に回転する機能を備えた台車、④水 平方向の位置を調節するパンタグラフから構成 される遠隔機器の概念を構築した(図5)。また、 保守の作業動線に留意した関連設備の配置検討 を進めた上、定期交換に要する時間を算出した結 果、原型炉運転後期には4セクターの並行作業を 行うことで約70%の稼働率に見通しを得ている。

図5 炉内機器の遠隔保守方式

4. プラント設備の概念

【主熱輸送系、発電設備の基本概念】

原型炉の発電設備については、加圧水型原子炉の 冷却水条件を採用し、既存技術を流用できるよう にした。主熱輸送系については、ブランケット冷 却配管、リングヘッダー、蒸気発生装置、タービ ンに至るまでの機器配置検討した(図6)。また、 有効熱出力1,865MW、発電端電気出力640MWが得 られる。さらに、加熱電流駆動装置や冷却水ポン プ動力などの所内必要電力の一次評価を行い、送 電端電気出力として約250MWが得られた。発電に 利用していないダイバータ銅合金冷却配管系の 熱を有効利用することで約40MWの電気出力の増 大を見込んでいる。

図6 主熱輸送系の構成

【燃料システムの基本概念】

燃料システムについては、三重水素インベントリ 低減の観点から、真空容器より排気したガスから 不純物ガスを取り除いた燃料ガスをガスパフや ペレットにより真空容器へ入射するダイレクト リサイクル方式を採用する。これにより、水素同 位体分離系での三重水素インベントリを低減す ることが可能である。

【建屋と発電プラント全体像】

原型炉サイト全体イメージを構築するため、必要 な建屋サイズや配置構成の検討を進めた(図8)。 敷地面積はおおよそ1キロメートル四方である。

図8 トカマク複合建屋(左図)と発電プラント全体像(右図)