非接触プラズマ解析のための 流体・中性粒子輸送統合コードの開発 Development of integrated fluid and neutral transport code for detached plasma analysis

大野哲靖¹⁾, 增田翔太²⁾, 夏目祥揮¹⁾, 澤田圭司²⁾, 田中宏彦¹⁾, 本郷棟太²⁾, 土居健志²⁾, 関谷光之²⁾, 小山晟矢²⁾, 井戸太一¹⁾, 杉浦健斗¹⁾, 林 祐貴³⁾, 星野一生⁴⁾ OHNO Noriyasu¹⁾, MASUDA Shota²⁾, NATSUME Hiroki¹⁾, SAWADA Keiji²⁾, TANAKA Hirohiko¹⁾, HONGO Tota²⁾, DOI Takeshi²⁾, SEKIYA Koshi²⁾, KOYAMA Seiya²⁾, IDO Taichi¹⁾, SUGIURA Kento¹⁾, HAYASHI Yuki³⁾, HOSHINO Kazuo⁴⁾

> ¹⁾名大院工, ²⁾信州大工, ³⁾核融合研, ⁴⁾慶應大理工 ¹⁾Grad. Sch. Eng., Nagoya Univ., ²⁾Sch. Eng. Shinshu Univ., ³⁾NIFS, ⁴⁾Keio Univ.

流体コードLINDAと運動論的効果を取り入れ た中性粒子輸送コード,ならびに衝突輻射コード を統合したシミュレーションコードを開発し,非 接触プラズマの解析を行う。シミュレーション結 果を直線型プラズマ装置NAGDIS-IIでの実験結果 と比較することにより開発したコードの検証を 行い,原型炉設計に資する統合コードとして完成 させる。本講演では,統合シミュレーションコー ドの開発状況について報告する。

Fig. 1はNAGDIS-IIの概要と計算メッシュを示 している。プラズマ流入部の電子密度,電子温度 はレーザートムソン散乱計測により高精度で計 測可能であり,シミュレーションの境界条件に用 いている。Fig. 2は,中性粒子輸送コードで計算さ れた非接触ヘリウムプラズマでの基底状態の中 性粒子密度分布を示している。(a)はプラズマ終 端板でのリサイクリングによる寄与,(b)は体積再 結合過程による寄与である。非接触プラズマ条件 下では体積再結合により生成された中性粒子が 密度分布を決めていることが分かる。また,開発 した中性粒子輸送コードでは,準安定原子の輸送 も計算可能である。

Fig. 1 NAGDIS-IIの概要と計算メッシュ

Fig. 3は準安定原子の有無による非接触プラズ マ形成の違いを示している。準安定原子を考慮し た場合,より上流で電子密度のロールオーバーが 発生し,非接触プラズマ形成が容易になっている ことが分かる。これは,準安定原子はより低い電 子温度でも電離するために電子密度が上昇し,エ ネルギー損失が増加しているためと考えられる。 これらの結果より,中性粒子輸送の精密な取り扱 いは,非接触プラズマシミュレーションの信頼性 向上に不可欠であることが分かる。

Fig. 2 中性粒子密度分布: (a)終端板でのリサイクリング の寄与, (b)体積再結合の寄与

Fig.3 非接触プラズマの構造 (a)電子温度, (b)電子密度,
(c) 粒子生成量:電離S_{ion}, 再結合S_{rec}, 荷電交換S_{CX}