電子・イオン系マルチスケール乱流シミュレーション Multi-scale simulations of electron and ion-scale turbulence

前山伸也 MAEYAMA Shinya

名大理 Nagoya Univ.

1. はじめに

磁場閉じ込め核融合プラズマにおける粒 子・熱の閉じ込めを議論するために、ジャイロ 運動論に基づくプラズマ乱流シミュレーショ ンが日常的に行われるようになって久しい。実 験結果の解析に用いる場合、実験結果に基づく 平衡配位を仮定し、そこで生じる微視的乱流を 局所フラックスチューブモデルの下でシミュ レーションを行う。こうした局所的アプローチ は、輸送モデルを構築し、統合コードにおける 輸送シミュレーションを行うことで分布の予 測に利用しようという炉設計活動とも親和性 が高い。

上記のような研究活動において、イオン Larmor半径程度で生じる微視的不安定性を対 象としたジャイロ運動論的シミュレーション が主に行われてきたが、我々の研究を含む2015 年頃の大規模数値シミュレーションにより、よ り微細な電子Larmor半径スケールの微視的不 安定性が、イオンスケールの乱流とのマルチス ケール相互作用を介して乱流輸送に影響を与 えることが示唆された。以降、電子スケール効 果に関して、数値シミュレーション研究、実験 との比較研究がなされ、徐々にその普遍的理解 が見えつつある。本講演では、シンポジウム"環 状プラズマシミュレーションの現状と展望"の 趣旨に鑑み、電子・イオン系マルチスケール乱 流シミュレーションのこれまでの理解と最近 の進展、今後の課題について述べる。

2. 高性能計算(HPC)アプリケーションとして のジャイロ運動論的シミュレーション

高い時空間分解能を必要とするマルチスケ ール乱流シミュレーションを実現するには、ス ーパーコンピュータの性能向上のみでは不十 分であり、演算性能を最大限に引き出すシミュ レーションコードの開発が不可欠である。

名古屋大学・核融合科学研究所・京都大学が 中心となり開発を進めているジャイロ運動論 的シミュレーションコードGKV[1,2]は、局所フ ラックスチューブ配位における分布関数およ び電磁揺動の時間発展を摂動ジャイロ運動論 方程式に基づいて記述する。スペクトル法およ び差分法により5次元位相空間を格子状に分割 するEuler型解法を採用し、MPIとOpenMPによ りハイブリッド並列化されている。

GKVでは計算のボトルネックとなるノード 間通信を最小化するために、区分化プロセス配 置、通信・演算オーバーラップなどの工夫を施 すことで、「京」コンピュータでの高い並列性 能を達成した[2]。これに加えて、さらにノード 間バンド幅対CPU演算性能比が低下する「富 岳」に向けて、並列スペクトル計算の通信最適 化[3]およびMPI通信フリー反復法による衝突 項陰解法[4]を開発し演算密度を向上させた。こ れにより、富岳36,864ノード(1,769,472コア) に対し、7.6 PFLOPS、理論ピーク演算性能比 6.1 %,並列効率 68.3%の良好なスケーリング を実現した。「富岳」を活用することで、「京」 時代よりもさらに計算コストが高い多粒子種 マルチスケール乱流の研究が可能となった。

3. 電子・イオン系マルチスケール乱流輸送 3.1 これまでの研究に関するレビュー

本節では、電子・イオン系マルチスケール乱 流相互作用に関する一連の研究成果を振り返 ってみよう。

第1の物理機構は、長波長のイオン温度勾配 (ITG)駆動乱流による短波長の電子温度勾配 (ETG)駆動乱流の抑制である。これは電磁的ITG モードにおいても[5]、Alcator C-Mod[6], DIII-D [7,8], JET[9]などの多くの実験配位解析でも観 測されており、基本的なマルチスケール相互作 用機構であるといえる。一方、ITGモードの成 長率が安定限界に近い場合、第2の物理機構と して、ETG乱流による帯状流シアの減少とそれ によるITG乱流輸送の増大が報告されている [5,6]。さらに、ITGモード以外のイオンスケー ル不安定性に対する研究も展開されている。 ASDEXコア部様パラメータを用いた研究では、 第3の物理として、ETG乱流による微視的ティ アリングモード(MTM)の抑制が報告されてい る[10]。一方、ペデスタル部パラメータでの解 析ではMTMとETGが共存しうるとの報告もあ る[11]。類似の機構の第4の物理として、ETG乱 流が捕捉電子モード(TEM)の抑制に働くという 結果が得られている[12]。これらに共通する物 理描像として、あるスケールの乱流が別のスケ ールの乱流・流れ構造を典型的に減衰させるよ うに働く、相互阻害性を持つという普遍的描像 が見えつつある。

マルチスケール乱流は、実験的に観測される 熱輸送の説明という観点からも重要と考えら れており、Alcator C-ModのLモード放電[6], Hモ ード放電[13]、DIII-DのITERベースライン放電 [7,14]、JET[9]などの解析でマルチスケール相互 作用の重要性が指摘されている。また、TCV, ASDEX Upgrade, JETの装置間比較研究からは、 電子温度勾配が高い場合のstiffな電子熱輸送の 原因としてETGが候補とされており、電子スケ ール効果を含むマルチスケール乱流シミュレ ーションによってそのトレンドが説明でき得 る[15]。

マルチスケール相互作用、特に、電子スケー ル効果がいつ重要になるかという判別条件は、 未だ十分に確立されていない。経験則や帯状流 混合モデル[16]、ExB速度の磁力線平行方向シ アモデル[17]などからは、ETGモード成長率 (γETG)がITGモード成長率(γTG)より大きく、波数 ky依存性も考慮して、max(γETG/ky) > max(γTTG/ky) の場合にETG乱流の影響が無視できないと見 積もられる。しかし、この判別条件が十分に満 たされていても、ETGが強く抑制するケースも 報告されており[8,18]、更なる理解の進展が望ま れる。

3.2 最近の進展:マルチスケール乱流輸送現象の核燃焼プラズマに対する外挿性

実験との比較研究によってマルチスケール 相互作用を検証しようという機運が世界的に 高まる一方で、核燃焼プラズマは、電子、重水 素・三重水素燃料イオン、ヘリウム核燃焼灰な どから成る多粒子種混合プラズマであること、 α粒子による電子加熱が支配的な高電子温度 プラズマであることといった、既存実験装置と は異なるプラズマパラメータで特徴づけられ る。将来の核燃焼プラズマにおいてもマルチス ケール相互作用が働きうるか否かを明らかに することは、プラズマ閉じ込め性能の外挿性・ 予測性を議論していくうえで重要な物理課題 である。我々の最近の研究では「富岳」を活用 して、高電子温度・多粒子種混合プラズマにお けるマルチスケール乱流シミュレーションを 実施することで、電子・イオン温度比1を超え る高電子温度領域でもETG乱流が影響を与え うること、ETG乱流がTEM乱流を抑制すること で乱流輸送が低減される温度領域が存在しう ることなどが示された[12]。

4. まとめと今後の課題

電子・イオン系マルチスケール乱流に関する 一連の研究から、その物理的理解が深まってき た。プラズマ物理学の観点からは、電子スケー ル効果が重要となる場合の判別条件やマルチ スケール相互作用のモデル化といった課題が、 核融合炉開発の観点からは、JT-60SAやITERで のマルチスケール相互作用の評価や、マルチス ケール相互作用による閉じ込め改善領域を装 置設計に活かせるかといった課題がある。理論 的理解を進める上でも、装置設計への応用上も さらなるシミュレーション研究の進展が期待 される。

References

- 1. T.-H. Watanabe, et al., Nucl. Fusion 46, 24 (2006).
- 2. S. Maeyama, et al., Parallel Comput. 49, 1 (2015).
- Y. Asahi, et al., Concurr. Comput. Pract. Exp. CCPE 32, e5551 (2019).
- 4. S. Maeyama, et al., Comput. Phys. Commun. 235, 9 (2019).
- S. Maeyama, et al., Phys. Rev. Lett. 114, 255002 (2015).
- 6. N. T. Howard, et al., Nucl. Fusion 56, 014004 (2016).
- 7. C. Holland, et al., Nucl. Fusion 57, 066043 (2017).
- T. F. Neiser, T. F. et al., Phys. Plasmas 26, 092510 (2019).
- 9. N. Bonanomi, et al., Nucl. Fusion 58, 124003 (2018).
- 10. S. Maeyama, et al., Phys. Rev. Lett. 119, 195002 (2017).
- 11. M.J. Pueschel, et al., Nucl. Fusion 60, 124005 (2020).
- 12. S. Maeyama, et al., Nature Commun. 13, 3166 (2022).
- N. T. Howard, et al., Plasma Phys. Control. Fusion 60, 014034 (2018).
- 14. N. T. Howard, et al., Nucl. Fusion 61, 106002 (2021).
- 15. A. Mariani, et al., Nucl. Fusion 61, 116071 (2021).
- 16. G. M. Staebler, et al., Phys. Plasmas 23, 062518 (2016).
- 17. M. R. Hardman, et al., J. Plasma Phys. 86, 905860601 (2020).
- 18. J. Citrin, et al., Nucl. Fusion 62, 086025 (2022).