講演番号 25Da09

単結晶CVDダイヤモンド検出器を用いたブランケット模擬体系内の高速中性 子束と燃料生産性の評価

Evaluations of fast neutron flux and fuel production in blanket mock-ups using single crystal CVD diamond detector

向井啓祐¹, 荻野靖之¹, 松尾拓海¹, 坂部俊郎¹, 八木重郎¹, 小林真^{2,3}, 小川国大^{2,3}, 磯部光孝^{2,3}, 玉置真悟⁴, 村田勲⁴

Keisuke Mukai¹, Yasuyuki Ogino¹, Takumi Matsuo¹, Toshiro Sakabe¹, Juro Yagi¹, Makoto

Kobayashi^{2,3}, Kunihiro Ogawa^{2,3}, Mitsutaka Isobe^{2,3}, Shingo Tamaki⁴, Isao Murata⁴

1京大,2核融合科学研,3総研大,4阪大

¹Kyoto University, ²NIFS, ³SOKENDAI, ⁴Osaka University

Introduction

In a deuterium-tritium (DT) fusion reactor, tritium breeding ratio (TBR), the rate of bred tritium in blanket to consumed tritium in plasma, must be greater than unity for a continuous operation. In our previous study, by using a compact discharge-type fusion neutron source generating deuterium-deuterium (DD) fusion neutrons, tritium production rates in breeding blanket mock-ups were successfully evaluated with a single-crystal diamond detector with a ⁶LiF convertor [1]. The method should be tested in 14.1 MeV DT fusion neutron environment for the application of fusion neutron diagnostics. In this study, fast neutron flux and tritium production rate were measured by the single crystal chemical vapor deposition (CVD) diamond detector and the results were compared with the results of activation foils and simulations.

Methods

Three blanket mock-ups composed of polyethylene moderator, graphite reflector, and lithium carbonate (Li₂CO₃) tritium breeder were irradiated with DT fusion neutrons at the OKTAVIAN facility (acceleration voltage: 240 kV). Geometry 1 had no Li₂CO₃ block, while geometry 2 and 3 had one and two of 5 cm thick Li₂CO₃ layers, respectively. Neutrons in the mock-up were measured by a single-crystal CVD diamond detector with a ⁶LiF convertor calibrated with an unsealed ²⁴¹Am source. The neutron measurements were also done with activation foils of Au, Dy, and Nb. Neutron transport and activation of the foils were calculated by using MCNP6 and FISPACT codes.

Results and Discussion

Each of the blanket mock-up was irradiated for 2 hours. The total numbers of source neutron for

geometry 1, 2, and 3 were 2.40×10^{13} , 3.28×10^{13} , and 3.20×10^{13} with the deviations of approximately 10%. The online measurements of tritium production rate were carried out by integrating triton peak via ⁶Li(n,t) appeared in the deposition energy range of 2.0-3.0 MeV. The energy spectra measured by the diamond detector had a large background, deriving from elastic reaction of ¹²C. The obtained triton count rates are shown in Fig. 1. The count rates in geometry 2 and geometry 3 were 7.6 \times 10^{-9} and 7.0 \times 10^{-9} and clearly lower than that of geometry 1, because of thermal neutron capture by ⁶Li in Li₂CO₃. On the other hand, the count rates of the ${}^{12}C(n,\alpha)$ reaction (threshold energy: 6.18 MeV) peaks were almost equivalent in these geometries. In the presentation, the results of the activation foils as well as the simulation results will be reported.

Fig. 1 Triton count rate per source neutron (s.n.) measured by the single crystal CVD diamond detector with a 6 LiF converter.

Reference

[1] K. Mukai et al. Nucl. Fusion 61 (2021) 046034