25Da05

核融合発電システム統合試験プラントUNITY 概要 Kyoto Fusioneering's Unique Integrated Testing Facility for Fusion Power Generation: UNITY, Overview of the project

田渕将人¹、小川聰¹、Colin Baus^{1,2}、久米祥文¹、杉山大志¹、松永祥尚¹、 井野孝¹、武田秀太郎^{1,3}、世古圭¹、長尾昂¹、小西哲之¹

Masato Tabuchi¹, Satoshi Ogawa¹, Colin Baus^{1,2}, Yoshifumi Kume¹, Taishi Sugiyama¹, Yoshinao Matsunaga¹, Takashi Ino¹, Shutaro Takeda^{1,3}, Kiyoshi Seko¹, Taka Nagao¹, Satoshi Konishi¹

¹京都フュージョニアリング株式会社、²京都大学、³九州大学 ¹Kyoto Fusioneering Ltd., ²Kyoto University, ³Kyushu University

Background

One of the R&D challenges on the critical path achieving a fusion pilot plant is to demonstrating the viability of net power production from fusion. In particular, technology readiness levels (TRLs) of critical components need to be raised from 3 to 7 while ensuring reliability and simplicity, which are important criteria for commercial viability. This challenge spans across multiple engineering domains and requires an integrated approach. Kyoto Fusioneering Ltd (KF) has started a project to construct a world-first integrated testing facility for simulated fusion power generation in Japan. This facility is named UNITY (**UN**ique Integrated $\underline{\mathbf{T}}$ esting facilit $\underline{\mathbf{Y}}$) to signify the bringing together of all critical components that will be tested in the facility.

Overview of the project

The project is backed by private equity \mathbf{as} well as Japanese government grants, and is scheduled to be fully operational in 2024. The goals of the project are to test and demonstrate: 1) heat extraction from a breeding blanket, 2) heat transfer and exchange, 3) electricity generation, and 4) tritium extraction under commercially relevant conditions. These activities are to be ready in time for integration into the first fusion pilot plants. Figure 1 shows a mock-up of plasma core and high-temperature section of UNITY. A simple flow diagram of UNITY is shown in Figure 2. Key technologies developed for UNITY, such as SiC_f/SiC heat exchanger and pipework, will be valuable

for various reactor concepts and not limited to those with conventional blanket structure but includes innovative blankets (e.g., liquid first wall designs). This presentation will outline the engineering design, progress, and expected outcomes, while detailing where and how the technology will have an impact, including within in Japan's national strategy for fusion R&D activities under the updated strategy.

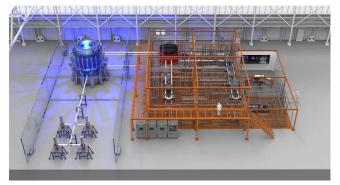


Figure 1 Mock-up of plasma core and high temperature section.

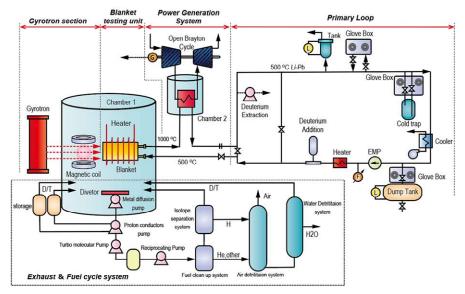


Figure 2 Schematic diagram of UNITY