# 準光学ビーム追跡コードの開発 Development of quasioptical beam tracing code

浅井史也<sup>1</sup>、久保伸<sup>2</sup>、辻村亨<sup>2</sup>、中野治久<sup>1,3</sup>、田中照也<sup>1,3</sup> F. Asai<sup>1</sup>, S. Kubo<sup>2</sup>, T. Tsujimura<sup>2</sup>, H. Nakano<sup>1,3</sup>, T. Tanaka<sup>1,3</sup>

> <sup>1</sup>名大、<sup>2</sup>中部大、<sup>3</sup>核融合研 <sup>1</sup>Nagoya Univ., <sup>2</sup>Chubu Univ., <sup>3</sup>NIFS

#### 1. はじめに

従来、電子サイクロトロン共鳴加熱(ECH)の 評価において、幾何光学光線追跡法が用いられ ている。この手法はビームの波動性を無視する ことで平面波に近似し、その伝搬を光線とみな して追跡することで計算を高速化した。しかし、 波動性を無視したことで、ビーム幅の評価精度 が不十分となり、局所加熱を特徴とするECHの 評価にあたって不都合である。この問題点を克 服するためビーム追跡コードが開発されてき た。特に、近軸近似に基づき、波長に対するプ ラズマの不均一性やビームの大きさが十分大 きいとする近似を加えたPARADEコードが開 発され、その有用性が確認されている[1]-[4]。しか し、近軸近似以外の近似が破綻する領域での結 果の妥当性が評価できない欠点があった。そこ で、本研究では波動性を考慮したより高精度な ビーム追跡コードの開発を目的とした。

### 2. 計算手法

本研究では近軸近似のみを用い、波動方程式 をz方向(伝搬方向)に1階微分、x,y方向に2階微分 の微分方程式に帰着させる。ここで、x,y方向微 分は各メッシュ点で差分法により求め、各メッ シュ点でz方向にルンゲクッタ法を用いること で、各メッシュ点でのビームの発展が得られる。 この手法に用いられる近似は近軸近似のみで あり、従来のビーム追跡コードよりも近似を緩 めた形となっている。そのため、従来よりも広 い範囲、特にプラズマの不均一性のスケール長 やビーム幅が波長に近くなる場合にも適用で きることが期待され、従来のビーム追跡コード の妥当性、適用範囲の検証も可能となる。

## 3. 結果と考察

開発したコードを用いて、さまざまな条件で 計算を行ったところ、吸収が起こらない領域で エネルギーが保存されており、プラズマ中での ビームの定性的なふるまいを再現しているこ とが確認できた(図1)。また、プラズマの不均一 性やビームの大きさが波長に比べて十分に大 きくない場合にはPARADEコードの計算結果 が一部一致しなかった。PARADEでは、偏波ベ クトルの微分成分を無視していたことや、すべ てのメッシュ点で光軸の波数ベクトルを用い て計算していたことが原因と考えられる。そこ で、各メッシュ点において分散関係を満たしつ つ、局所的な近軸近似とホイヘンス・フレネル 積分を用いて位相関数 ¢ の発展と振幅分布、偏 波の変化を逐次計算することでこの問題を解 決できないか検討を行っている。



図 1 磁場に対して水平に入射した時のシミュレーション結果。磁場および電子密度は x,y 方向に一様で z 方向にのみ勾配を持つ。(a),(b)に示した破線は真空中における中心ビーム強度、ビーム幅である。(c)は特徴的な周波数を入射波周波数で規格化したもので、それぞれサイクロトロン周波数 $f_c$ 、プラズマ周波数 $f_p$ 、右回り円偏波カットオフ周波数 $f_r$ である。z = 1.58 m付近で Rカットオフ条件に達し、反射する様子を確認できた。

#### 参考文献

[1] I. Y. Dodin, D. E. Ruiz, K. Yanagihara, Y. Zhou, and S. Kubo, Physics of Plasmas, Vol.26 (2019), 072110.

- [2] K. Yanagihara, I. Y. Dodin, and S. Kubo, ibd. Vol.26 (2019), 072111.
- [3] K. Yanagihara, I. Y. Dodin, and S. Kubo, ibd. Vol.26 (2019), 072112.
- [4] K. Yanagihara, I. Y. Dodin, and S. Kubo, ibd., Vol.28 (2021), 122102.