中心点火レーザー核融合における磁場による電子熱伝導抑制効果 Effects of magnetic fields on ignition of central ignition laser fusion though suppression of electron conduction

松村尚紀, 城崎知至, 金佑勁, 遠藤琢磨 Naoki MATSUMURA, Tomoyuki JOHZAKI, Wookyung KIM, Takuma ENDO

広島大学 Hiroshima University

近年,爆縮による強磁場形成やレーザー駆動 キロテスラ級磁場の形成が実現されたことで, 磁場印加レーザー核融合が注目されている [1][2].本研究では、キロテスラ級磁場が中心点 火レーザー核融合の点火燃焼特性に与える影 響を明らかにすることを目的とし、今回は、磁 場による熱流抑制が点火燃焼特性に及ぼす影 響をシミュレーションにより評価した.また、 点火部・主燃料部境界の擾乱存在下で点火燃焼 特性への磁場の影響についても評価した.

シミュレーションには、磁場の移流及び磁場 による電子熱伝導抑制を考慮した軸対称円柱 座標系の輻射流体コードFIBMETを用いる[3]. 計算の初期状態として中心点火方式の最大圧 縮状態を想定し、等圧状態のDT球状静止プラ ズマを仮定した.主燃料部温度・密度・面密度 はそれぞれ1 keV・250 g cm⁻³・3.0 g cm⁻²とし、点 火部温度は6 keV,密度は等圧となるように42 g cm⁻³とした.擾乱は点火部と主燃料部の界面に 与え、初期磁場を極軸方向に一様に印加する. 点火部半径と磁場強度,擾乱の大きさ、モード 数をパラメータとして計算を行った.

点火部初期半径 60 µm (面密度0.26 g cm⁻²)で, モード数12・擾乱振幅20 µmを与えた場合の,計 算開始から10 ps経過後の電子熱伝導による加 熱・冷却分布((a), (c))と圧力分布((b), (d))を図1 に示す. (a), (b)は磁場印加なし, (c), (d)は30 kTの 一様磁場を印加した結果である.印加磁場がな い場合、図1(a)に示すように、高温バブル部か ら低温スパイク部への電子熱伝導によるエネ ルギー輸送が生じ、バブル部圧力が低下し、ス パイク部圧力が上昇する(図1(b)). これにより スパイク部のアブレーションが生じ,擾乱の平 滑化が進む (Fire Polishing[4]). 一方, 磁場を印 加した場合(図1 (c), (d))は、磁力線垂直方向の 電子熱伝導が抑制されることで, 極軸近傍での バブルースパイク間の熱流が抑制され、磁場を 印加していない場合に比べてバブルースパイ

ク間の圧力差が小さくなり、アブレーションが 弱くなる.

点火部の温度が上昇し、α粒子加熱が電子熱 伝導加熱より優位に働くようになると、磁場に よる電子熱伝導の異方性が点火燃焼特性に与 える影響は小さくなる.よって、α粒子加熱が 弱い点火初期において磁場による熱伝導抑制 がダイナミクスに影響を及ぼす.その結果、磁 場による熱流抑制効果により、点火部・主燃料 部境界の擾乱の有無にかかわらず、点火に要す る点火部面密度が9%程度低減し、点火時の燃 料内部エネルギーは8%低下する結果となった.

- [1] Knauer et al., Phys. Plasmas, 17, 056318 (2010).
- [2] L.J.Perkins et al., Phys. Plasmas 20, 072708 (2013).
- [3] T. Johzaki et al., J. Phys. IV France, 133, 385(2006).
- [4] T. Takabe et al., Jpn. J. Appl. Phys. 32, 5675 (1993).

図 1. 点火部の圧力・電子熱伝導加熱分布 (t = 10 ps, 等高線は密度分布, (a)(c)中の矢印は電 子熱伝導による熱流束, (b)(d)中の矢印は流体速 度を表す)