24P-4F-10

ヘリウム混合プラズモイドによるFRC衝突合体生成過程の可視化 Visualization of collisional merging FRC formation process by Helium doped plasmoid

櫻田凌介,小林大地,関太一,山中拓人,田村康明,染谷紘希,髙橋努,浅井朋彦 SAKURADA Ryosuke, KOBAYASHI Daichi, SEKI Taichi, YAMANAKA Takuto, TAMURA Yasuaki, SOMEYA Hiroki, TAKAHASHI Tsutomu, ASAI Tomohiko

日大

Nihon Univ.

磁場反転配位(FRC)プラズマは、体積平均 βが1と極限的に高く、また装置と鎖交しない ため軸方向への移送が可能である。日本大学の FAT-CM装置では、2つのFRC様の初期プラズモ イドを磁気圧差で加速,アルヴェン速度を超え る相対速度[1]で衝突・合体させることで単一の FRCを生成する実験が行われている^[2]。磁気リ コネクションを介して2つのプラズモイドが合 体している可能性があるが,その大域的な観測 例は報告されていない。また、実験から想定さ れるプラズマ抵抗を条件としたMHDシミュレ ーション^[3]では衝突後にFRC様の磁場構造が再 形成されるまでの時間スケール^[4]が実験と一致 しないことから、移送時の運動エネルギーによ って駆動される高速な磁気リコネクションが 生じている可能性がある。

磁気リコネクション過程の観測のため、片側の初期プラズモイドの放電ガス(重水素)に分光観測のためのトレーサ元素として微量のヘリウムを混合し、衝突合体過程におけるプラズモイドの振る舞いの可視化を試みた。予備実験において混合比が10%以下の時、プラズマの温度や密度、体積にほとんど影響を与えないことが示された。ヘリウムイオンの線スペクトルの観測のための中心波長470 nmのバンドパスフィルターを備えた高速度カメラ(撮影間隔:2 µs)を使用して装置中央部にて観測を行なった。

ヘリウムの混合比率が10%の場合の観測結果 を図1に示す。衝突時($t = 38 \mu s$)から前後4 μs を切り出した画像である。ヘリウムを10%混合 した場合では片側(図の左側)で発光強度が強 くなっており、プラズモイドの振る舞いを観測 するために十分な光量が得られた。また、この 結果から発光領域が時間経過により拡大して いる様子がみられ、径方向の拡大は磁気リコネ クションに伴うアウトフローであると考えら れる。以上の結果からヘリウムをトレーサーと して用いた場合でも、FRCの衝突合体過程にお いて、プラズモイドの振る舞いに大きな影響は 与えていないと考えられる。

図2 (a)計測状況と(b)フローの計測位置

また観測結果から、磁気リコネクションは少 なくとも30 – 40 μ s程度の時間スケールで生じ ていると考えられる。さらに図2(b)に示すよ うに平行な2線分を選択し、発光量の線積分値 立ち上がり時間の差と、線分間の距離から軸方 向と径方向のフロー速度を見積もった。衝突後 では($t \sim 50 \mu$ s)径方向の速度は9 km/s 程度, 軸方向の速度は8 km/s 程度であった。

ヘリウム混合FRCと高速度カメラの観測によ り、磁気リコネクションや合体過程を可視化に 成功した。本手法を用いて、初期プラズモイド のパラメータや境界条件などとのFRCの衝突合 体時におけるリコネクション過程や緩和過程 の関係性の検証を試みる。

参考文献

[1] D. Kobayashi et al., Phys. Plasmas 28, 022101 (2021).

- [2] T. Asai et al., Nucl. Fusion 59, 056024 (2019).
- [3] T. Asai et al., Nucl. Fusion 61, 096032 (2021).
- [4] D. Kobayashi et al., Rev. Sci. Instrum. 92, 053515 (2021).