AMSB新構造ダイバータ受熱機器試験体のLHDダイバータプラズマへの照射試験 Irradiation test of the AMSB new divertor heat removal component to the LHD divertor plasma

時谷政行¹, 浜地志憲¹, 平岡 裕², 増崎 貴¹, 田村 仁¹, 能登裕之¹, 田中照也¹, 恒吉達矢³, 辻 義之³, 室賀健夫¹, 相良明男¹, FFHR設計グループ¹, 林 祐貴¹, 本島 厳¹, 林 浩己¹, 村瀬尊則¹, 森崎友宏¹, LHD実験グループ¹ M. Tokitani¹, Y. Hamaji¹, Y. Hiraoka², S. Masuzaki¹, H. Tamura¹, H. Noto¹, T. Tanaka¹, T. Tsuneyoshi³, Y. Tsuji³, T. Muroga¹, A. Sagara¹, FFHR Design Group¹, Y. Hayashi¹, G. Motojima¹, H. Hayashi¹, T. Murase¹, T. Morisaki¹, LHD Experiment Group¹

¹ 核融合科学研究所,² 岡山理科大学,³ 名古屋大学 ¹National Institute for Fusion Science,² Okayama University of Science,³ Nagoya University

これまでに、BNi-6(Ni-11%P)ろう材を使用し、 タングステン(W)と酸化物分散強化銅(ODS-Cu; GlidCop®)を中間緩衝材無しで直接ろう付接合を 行う「先進的ろう付接合法」を開発し、ダイバー タ受熱機器開発を行ってきた[1].その後,「先進 的ろう付接合法」を高度化して, GlidCop[®]同士 (GlidCop[®]/GlidCop[®]), あるいは, ステンレス鋼 (SUS)と GlidCop[®](SUS/GlidCop[®])の接合において, 流体漏れの無い完全リークタイトな接合継手の 製造を可能とする技術開発に成功した.本接合技 術は、①完全リークタイトな封止構造、②リーク タイト接合部は面で接合可能, ③熱応力や冷却水 圧に耐える接合接手強度, ④接合部は繰り返しろ う付熱処理を受けても劣化しない、という4つの 特徴を同時に満たすものであり、これらの特徴を 取り入れた新しいろう付接合法「先進多段階ろう 付接合法(Advanced Multi-Step Brazing: AMSB)」を 開発した.

図 1(a)および(b)は、AMSB を用いて製造した W/GlidCop[®]製新構造ダイバータ受熱機器試験体 の実物写真と断面図である.SUS/GlidCop[®], W/GlidCop[®]の順に2段階のろう付接合を用いて製 造された.GlidCop[®]製ヒートシンクは矩形の冷却 流路を有していること、冷却流路上壁にV型スタ ッガードリブ構造が切削加工されていることが 特徴である.これにより、冷却流路を流れる冷却 水に旋回流が生じ、高い除熱効率が得られる[2].

本試験体の除熱性能を評価する目的で,核融合 科学研究所に既設の電子ビーム熱負荷試験装置 (ACT2)による定常熱負荷試験を実施した.冷却水 条件は、「流速:~6.9 m/s,入口圧力:~0.5 MPa, 入口温度:室温」とし、図1(a)のW表面に四角形 で色付けしている領域に最大で~30 MW/m²の定 常熱負荷を印可した.~30 MW/m²においても,厚 さ5 mmのW平板中心部の温度は~1200℃,W直 下のGlidCop[®]の温度は~400℃であり,構造的に問 題無い温度範囲に維持された.

次に、本試験体の実機装置での除熱性能および

信頼性を確認する目的で、冷却水を流しながら大型へリカル装置(LHD)のダイバータプラズマへの 照射実験を実施した.図2に、照射後の全体像と ダイバータストライクポイント近傍の拡大像を 示す.照射実験では、本除熱機器試験体を3体並 列に並べた状態で可動式の試料駆動装置を用い てダイバータストライクポイント位置まで挿入 し、合計1180 shot のプラズマに曝露した.ダイバ ータプラズマの磁力線は、Wアーマーに対して45 度程度の角度で入射された.取り出した後のタン グステン表面にはマイクロスケールのクラック やユニポーラアークの痕跡が見られたが、ミリメ ートルスケールの損傷および冷却水漏れなどは 確認されなかった.以上の結果より、十分な除熱 性能と信頼性が証明された.

M. Tokitani et al., Nucl. Fusion 57 (2017) 076009. T. Tsuneyoshi et al., JSFM (2015) C11-1

図 1. (a)AMSB を用いて製造した W/GlidCop[®]製新 構造ダイバータ受熱機器試験体の実物写真. 熱負 荷試験時の面積(20mm×36mm)を図示してある. (b)熱負荷領域近傍の断面図.

図 2. (a)LHD ダイバータプラズマに 1180 shot 曝露 後の AMSB 新構造ダイバータ受熱機器試験体の 全体像. (b)全体像中四角で囲んだ領域の拡大像.