非相対論から相対論的強度のレーザーによるナノメートル厚ターゲット large-area suspended graphene を用いたイオン加速 Laser ion acceleration with a large-area suspended graphene target from non-relativistic to relativistic laser intensities 南卓海¹, 廖育資², 境健太郎¹, 西本貴博¹, 安部勇輝¹, 桐山博光³, 近藤康太郎³, 有川安信⁴, 余 語覚文⁴, 坂和洋一⁴, Alessio Morace⁴, 江頭俊輔⁴, 太田雅人⁴, 浅井孝文^{3,5}, 神野智史⁶, 金崎真 聡⁵, 福田祐仁³, 羽原英明¹, 溫偉源², 蔵満康浩¹ MINAMI Takumi¹, LIAO Yu-Tzu², SAKAI Kentaro¹, NISHIMOTO Takahiro¹, ABE Yuki¹, KIRIYAMA Hiromitsu³, KONDO kotaro³, ARIKAWA Yasunobu⁴, YOGO Akifumi⁴, SAKAWA Yoichi⁴, MORACE Alessio⁴, EGASHIRA Shunsuke⁴, OTA Masato⁴, ASAI Takafumi^{3,5}, JINNO Satoshi⁶, KANASAKI Masato⁵, FUKUDA Yuji³, HABARA Hideaki¹, WOON Wei-Yen², KURAMITSU Yasuhiro¹ 阪大工¹, 台湾国立中央大², 量研関西³, 阪大レーザー研⁴, 神大⁵, 東大⁶ Eng., Osaka Univ.¹, NCU, Taiwan², KPSI-QST³, ILE, Osaka Univ.⁴, Kobe Univ.⁵, Univ. of Tokyo⁶

Laser ion acceleration has been intensively investigated after the development of chirped pulse amplification (CPA) technique[1]. The accelerated ions are applicable for cancer therapy, radioisotope production, and fast ignition for inertial confinement fusion. To achieve higher ion energies, target thickness should be reduced[2]. However, thinner targets can be easily broken by the pedestal or prepulse before the main pulse arrival. We have developed a large-area suspend graphene (LSG) target, which is a single to multiple layered freestanding graphene sheet[3]. Graphene is the thinnest and the strongest material, hence LSG has the potential to be the best targets of laser ion acceleration.

We have conducted several experiments with LFEX laser in Osaka University and J-KAREN-P laser in Kansai Photon Science Institute, National Institutes of Quantum Science and Technology. The LFEX laser irradiates on LSG targets with target normal angle. The maximum intensity is $\sim 4 \times 10^{18}$ W/cm²[4, 5]. The J-KAREN-P laser is focused on LSG targets with 45 degree of incident angle at the intensity of $\sim 5 \times 10^{21}$ W/cm²[6, 7]. We have tested the irradiation of non-relativistic laser intensity, $< 10^{18}$ W/cm², by putting the targets at defocusing positions of J-KAREN-P. Thomson parabola spectrometer and CR-39 stack are used to diagnose

the accelerated ions. In the all experiments, no plasma mirrors are used.

We have observed energetic ions with relativistic laser intensities, $a_0 \sim 48$ of J-KAREN-P best focus shots and $a_0 \sim 1.8$ of LFEX. Furthermore, MeV energy ions are also observed with non-relativistic laser intensity, $a_0 < 1$, in defocused experiments of J-KAREN-P. These results imply that LSG has special features no other materials have. We discuss these specialities using particle-in-cell simulations.

References

- D. Strickland and G. Mourou. Optics Communications, 56(3):219–221, 1985.
- [2] M. Borghesi. Nucl. Instrum. and Methods in Phys. Res. Section A, 740:6–9, 2014.
- [3] N. Khasanah et al., High Power Laser Science and Engineering, 5:e18, aug 2017.
- [4] Y. Arikawa et al., Applied Optics, 55(25):6850, sep 2016.
- [5] A. Yogo et al., Scientific Reports, 7:1–10, 2017.
- [6] H. Kiriyama et al., Optics Letters, 45(5):1100, mar 2020.
- [7] A. S. Pirozhkov et al., Optics Express, 25(17):20486, aug 2017.