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Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. There are two main categories 
of methods to optimize the external coils for producing the target MHD equilibrium. The first one solves a surface current 
using Green’s functions and approximate discretized coils subsequently. The other one represents coil explicitly and 
optimize coil filaments considering engineering constraints. We will introduce these methods and particularly present the 
development of the new coil design code, FOCUS. 
 
 
1. Introduction 

The concept of stellarator optimization separates 
the problem of designing a high-performance plasma 
from the task of designing a suitable coils set. First, 
an attractive plasma equilibrium is identified by 
using a nonlinear optimization. The second stage of 
the design, which is the topic of this presentation, is 
to design a set of discrete current-carrying coils that 
creates the required external ‘vacuum’ field for 
confining the ‘reference plasma’ configuration.  
 

The vacuum field, 𝑩𝑽 , by which we mean the 
magnetic field produced by currents external to the 
plasma domain, must balance the magnetic field, 
𝑩𝑷, produced by the currents that may or may not be 
present in the plasma, so that the normal component 
of the total magnetic field, 𝑩 = 𝑩% + 𝑩𝑷, on S is 
zero. For vacuum fields, the Ampere’s Law in ideal 
MHD equations reduces to ∇	×𝑩𝑽 = 0 . Together 
with the magnetic divergence constraint ∇ ⋅ 𝑩𝑽 = 0 
we can easily derive ∇,𝜙 = 0 , where 	𝜙  is the 
magnetic scalar potential. Thus, the coil 
determination problem is to solve Laplace’s equation 
with the boundary condition of 𝑩% ⋅ 𝒏 = 	−𝑩𝑷 ⋅ 𝒏 
on S, where n is the unit surface normal. 
 

Beyond the needs of producing target magnetic 
field, coils are also required to be easy-to-build. This 
involves several engineering constraints that coils 
should meet. Since 1980s, Tremendous efforts have 
been made to find optimal coils that meet both the 
‘physics’ requirements and the ‘engineering’ 
requirements. 

 
2. Surface Current Approximation 

Pioneering work in the field of coil design was 
performed by Merkel with the development of the 
NESCOIL code [1], in which he assumed that the 
external magnetic field is produced by a surface 
current distribution on a closed toroidal surface 
surrounding the plasma. This toroidal surface 
constrains the location of the coils and is called the 

‘current carrying surface’ or the ‘winding surface’. 
The surface current density, 𝐣 = 𝐧	×∇Φ , is 
expressed by a current potential, Φ, on the winding 
surface. A Green’s function method is then applied 
to solve for the current potential distribution that 
minimizes the squared normal error. Once the 
surface current potential is determined, a set of 
discretized coils can be obtained by selecting an 
appropriate number of contours of Φ. Merkel’s 
method leads to a Neumann condition problem that 
can be linearly solved, and it’s inherently fast and 
robust. A singular value decomposition (SVD) 
method [2] and, more recently, a Tikhonov 
regularization approach [3] were applied to provide 
improvements on NESCOIL.  
 
3. Nonlinear optimization methods 

A different approach that explicitly incorporates 
engineering constraints has been advanced by 
Drevlak with the extended NESCOIL code and 
ONSET [4], by Strickler et al. with the code 
COILOPT [5], and later by Breslau et al. with 
COILOPT++. The coils are represented as 
‘filaments’, one-dimensional curves, lying on a 
toroidal winding surface (which is either pre-defined 
or optimized simultaneously). The magnetic field 
produced by δ-function current densities in the coils 
set is calculated using the Biot–Savart law. The 
geometry of the coils is varied using nonlinear 
optimization algorithms to minimize a ‘cost-function’ 
that represents a balance between the physics 
requirements (that the total normal magnetic field at 
the plasma boundary is as small as possible) and the 
engineering constraints (that the coils can be 
achieved by modern engineering techniques). 

 
4. FOCUS 
4.1 Three-dimensional representation 

For all the methods mentioned above, a toroidal 
winding surface is required to locate the coils 
(ONSET may need two constraining surfaces for 
interpolation). However, a ‘bad’ winding surface 
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directly results in the failure of finding an acceptable 
coils set. Here, we present a new method for 
designing stellarator coils that eliminates the 
winding surface altogether [6].  
 

We employ a very easy way of describing one-
dimensional curves embedded in three-dimensional 
space. A curve is described directly, and completely 
generally, in Cartesian coordinates as 𝐱(t) 	=
	x(t)	𝐢	 + 	y(t)	𝐣	 + 	z(t)	𝐤 . Three functions are 
required to specify the geometry, namely x(t), y(t) 
and z(t), with the constraints that each function be 
periodic, e.g. 𝐱(t	 + 	T) = 	𝐱(t)	 for some T. The 
curve parameter, t, at this point is arbitrary. A variety 
of mathematical representations are possible. For 
purpose of illustration, and because our initial 
interest is in smooth coils, we use a Fourier 
representation, 

𝑥 𝑡 = 	 𝑥?,A + [𝑥?,C 	cos 𝑛𝑡 +
HI
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𝑥L,C 	sin 𝑛𝑡 ] (1) 

with t varying between [0,2π], and similarly for y(t) 
and z(t). The shape of a coil is then fully determined 
by the 3×(2𝑁S + 1)  Fourier coefficients. No 
additional assumptions are made here, so this 
representation fits for all kinds of closed smooth 
coils, such as helical, modular, saddle, etc. 
 
4.2 Objective functions 

The coil parameters are to be varied to minimize a 
target function consisting of both ‘physics’ and 
‘engineering’ objective functions 

𝜒,(𝑿) = 𝑤X(
𝑓X 𝑿 − 𝑓X,Z

𝑓X,Z
), (2) 

 
where 𝑓X 𝑿 is the value of the j-th objective 
function, to be defined below, for a given set of coil 
parameters, 𝑓X,Z denotes the desired value, and 𝑤X 
is a user-prescribed weight. 
 

The following cost functions have been 
implemented in FOCUS: 1) normal field error, 2) 
toroidal flux error, 3) magnetic field Fourier 
components, 4) coil length, 5) coil to coil separation 
and 6) coil to plasma separation. 
 

The derivatives of the weighted target function, 
𝜒,, can be computed analytically by using functional 
derivatives [7]. Therefore, FOCUS can employ 
powerful minimization algorithms, without 
approximating the gradient or Hessian. 
 

 
4.3 Applications 

FOCUS has been validated by reproducing the 
W7-X modular coils starting from an arbitrarily 
circular initialization and applied to multiple 
configurations for different types of coils, including 
modular coils, helical coils, trim coils, etc. With 
analytically calculated Hessian, FOCUS is able to 
use eigenvalues of the Hessian matrix for 
determining the error field sensitivity to coil 
deviations [8]. The sensitivities provide information 
to avoid dominant coil misalignments and simplify 
coil designs for stellarators. A proof-of-principle 
example is given on a CNT-like configuration. More 
practical applications are conducted on the CFQS 
stellarator that is being built in China. 
 
 
5. Conclusions 

Different coil optimization methods have distinct 
features. FOCUS has shown improvements on 
simplifying the optimization procedure, accelerating 
nonlinear optimization and error field sensitivity 
analysis. For future stellarators, a combination of 
different tools would be preferable. 
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