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Optimizing stellarators for turbulent transport is one of the next steps before a successful stellarator 
reactor can be built. Due to the high computational costs, including nonlinear simulations in the 
optimization routine is not feasible. So-called proxies are therefore sought – expressions, usually 
motivated by analytical theory, that allow estimates of the relative turbulent transport levels based on 
inputs from magnetic geometry. Both for ion-temperature-gradient modes as well as trapped-electron 
modes proxies have already been found and successfully applied. In the future, including also the physics 
of nonlinear saturation of turbulence might increase the success of turbulence optimization even more. 

 
 
1. The Need for Turbulence Optimization  

With the advent of neoclassically optimized 
stellarators like Wendelstein 7-X, turbulent 
transport is expected to be the dominant transport 
channel in large parts of the plasma. In the first 
campaigns by Wendelstein 7-X, the observed 
transport could in fact not fully be explained by 
neoclassical transport, thus indicating that turbulent 
transport plays a significant role [1].  

In recent years, fully nonlinear simulations of 
turbulence driven by microinstabilities have 
become available for stellarator geometry. They 
reveal very interesting differences between the 
different geometries, in particular with regards to 
the transport levels [2]. An effect of the geometry 
on the microinstabilities that drive turbulence was 
already known from linear simulations – for 
example, Wendelstein 7-X had been observed to 
have lower growth rates of both 
ion-temperature-gradient modes (ITG) as well as 
trapped-electron modes (TEM) [3] than the HSX 
stellarator or a typical tokamak. In the nonlinear 
simulations, this behavior is retained, though the 
difference between HSX and Wendelstein 7-X is 
less pronounced. Nevertheless, the evident 
connection between magnetic field geometry and 
turbulence levels encourages optimization attempts 
also for turbulent transport.  

While using the nonlinear turbulent heat flux of a 
certain magnetic configuration would be the most 
trustworthy measure of quality with respect to 
turbulent transport, it is not very feasible. The main 
reason for this are the prohibitively high amounts of 
computing time required – for example, a typical 
well-resolved simulation of TEM turbulence in 
stellarator geometry requires millions of CPUh. 

To enable large scans over the vast space of 3D 
configurations we therefore need simplified, 
easy-to-compute expressions that serve as proxies 
for the turbulent transport. 

In the remainder of this paper we therefore 
present the ideas behind proxies for both major 
electrostatic instabilities, ITGs and TEMs and the 
first successes in turbulence optimization. Finally, 
we provide an outlook for future turbulence 
optimization work. 
 
2. Optimizing for Reduced ITG and TEM 
Turbulence Using STELLOPT 
2.1 Optimizing for reduced ITG turbulence   

As one of the first successes in terms of 
turbulence optimization, a reduction of ITG 
turbulence has been achieved by Mynick, 
Xanthopoulos and Pomphrey [4-7]. The idea behind 
this proxy is to reduce the drive for the ITG mode 
by reducing the unfavorable (“bad”) curvature k-

r of 
the magnetic field lines as well as increasing the 
distance between adjacent flux surfaces, expressed 
by the inverse of the radial covariant metric element 
grr. The proxy to be minimized for ITG 
optimization is thus c2

ITG =k-
r (grr)2, where squaring 

the metric element has been found to be most 
efficient for optimization.  

This proxy has been implemented in the 
STELLOPT code [8] – a code designed to optimize 
3D MHD equilibria with respect to a multitude of 
goals included in one cost function. For example, 
STELLOPT can simultaneously optimize for not 
only turbulent but also neoclassical transport – the 
latter is represented by including the neoclassical 
effective ripple as a proxy. The variation of the 
equilibria is achieved by treating the boundary 
harmonics of the equilibria as free parameters. The 
minimum of the cost function is then found by 
employing either steepest-decent methods like a 
modified Levenberg-Marquardt or stochastic 
algorithms like differential evolution. An example 
of a successful STELLOPT run is shown in Fig. 1. 
During the optimization process, the proxy value 
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for ITGs, c2
ITG, is generally going down. For this 

optimization, an additional constraint was also put 
on the neoclassical transport, which was increasing 
for higher equilibrium indices (not shown here). 
The equilibrium thus chosen as the optimum and 
titled MPX was thus not completely at the 
minimum of c2

ITG. It is predicted to have lower ITG 
turbulence than W7-X though.  

 

 
 

Fig.1. Values of the ITG proxy value for the different 
equilibria of the STELLOPT run which resulted in 

finding the MPX configuration. MPX clearly has a much 
lower ITG proxy than W7-X. Configurations with even 

lower ITG proxy value (higher equilibrium indexes) 
were not chosen because of their higher neoclassical 

transport (not shown here). Reprinted from [7] 
 
The success of the optimization can be checked by 
running nonlinear simulations. In [7] it was shown 
that the nonlinear ITG heat flux in MPX is indeed 
lower than W7-X for a range of temperature 
gradients and the optimization was thus successful. 
 
2.2. Optimizing for reduced TEM turbulence  

Also for TEM turbulence, a proxy motivated by 
analytical theory can be defined. The energy 
transfer between kinetic electrons and the modes 
has been found to be proportional to the 
bounce-averaged curvature wd of a given particle 
with pitch angle l integrated over all pitch angles 
[9,10]. More particles having negative (“bad”) 
bounce-averaged curvature will result in more 
energy being transferred to the modes. The proxy to 
be minimized is thus the negative averaged 
curvature. 

 
A successful optimization starting from the HSX 

stellarator which resulted in a reduction of the 

nonlinear TEM heat flux has been demonstrated in 
[11]. 
 
3. Outlook 

As the geometry changes in the course of the 
optimization, not only the linear drive but also the 
nonlinear saturation mechanisms change. Proxies 
which account for the nonlinear as well as linear 
effects could provide a large advance in their 
generality.  

In recent years, some progress has been made 
towards understanding the dynamics of different 
saturation mechanisms. Nunami et al. have obtained 
a model for zonal flows for LHD geometry [12], 
Plunk et al. found and explanation why zonal flows 
are stronger in W7-X geometry than in HSX 
geometry [13] and Hegna et al. showed how 
understanding the coupling of the unstable modes to 
damped modes helps in understanding saturation in 
HSX geometry [14]. Developing these ideas further 
and extending them to different modes and arbitrary 
geometry will allow for a more faithful modelling 
of turbulent transport and more powerful 
optimization routines. 
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