サブミリ波ジャイロトロン開発と応用 Development and applications of sub millimeter wave gyrotrons

立松芳典 Yoshinori Tatematsu

福井大遠赤セ FIR Univ. of Fukui

1. はじめに

ジャイロトロンは核融合研究を目的として 高出力化をめざして開発されてきた。一方、こ れとは別の方向性としてジャイロトロンの超 高周波数化があった。後者の目的で開発された のがサブミリ波ジャイロトロンである。福井大 学遠赤外領域開発研究センターでは、マグネッ トの磁場強度の増強と、高調波発振を利用する ことで高周波数化を行い、 889 GHz、出力 0.1kW、パルス幅1msのジャイロトロン発振を 達成した[1]。さらに2005年に、21.5 Tのパルス マグネットを用いて、2 次高調波発振で世界で 初めてジャイロトロンで1 THz発振のブレーク スルーを達成した[2]。その後ロシアIAP-RASで も1 THzを超える発振に成功した[3]。

サブミリ波ジャイロトロンの開発と応用に ついては、2008年の本学会誌に「高出力テラへ ルツ帯ジャイロトロン開発と応用展開」という タイトルの小特集が組まれている[4]。本講演は、 この小特集後のサブミリ波ジャイロトロンの 開発、応用の進展について述べる。

2. サブミリ波ジャイロトロンの開発

福井大学では2005年頃までは、高周波数化を めざしたジャイロトロン開発を行ってきたが、 上記1 THzのブレークスルーを達成した後は、 高周波数化から、個々の応用を目的としたジャ イロトロンの開発へと方針展開を図った。応用 のためにジャイロトロンに期待される性能と して、対象に合った出力レベル及び周波数帯の 実現の他

- · 連続発振
- 周波数の連続可変
- ・周波数の広帯域発振
- ・安定した出力、周波数発振
- ・ガウスビーム出力

などが期待される。このような目的で開発され た福井大のジャイロトロンはGyrotron FU CW シリーズ[5-10]、FU CW G シリーズ[11-17]と呼 ばれる。

Gyrotron FUCW シリーズの1号機 FUCWI はロシアIAP-RASと福井大の共同で開発され た[7]。周波数300 GHz, 出力2.3 kWを達成し、 新材料創成、セラミック焼結に用いられた。FU CW II, IV, VI, VIIは動的核偏極を用いた核磁気 共鳴分光実験の光源として開発された[6,8-10]。 この応用のための光源は、感度を最大にチュー ニングするために周波数を連続的に変化でき る機能を有する必要がある。ジャイロトロンの 周波数は離散的に変化すると考えられてきた が、軸方向モードの変化を伴うジャイロ後進波 管発振を利用することで、周波数を連続的に変 化できることがChangによって予想され、出原 によって実証された[8]。この後、周波数連続可 変ジャイロトロンの開発が世界でも盛んにな った[18,19]。

電磁波応用にはガウスビームでの伝送、照射 が都合がよい。ジャイロトロン内で、発振した 電磁波のガウスビームへの変換に関する研究 は、核融合用ジャイロトロンでは純度99%を超 えるようなモード変換器の開発が進んでいる。 サブミリ波ジャイロトロンでも、最近モード変 換器を内蔵するものが開発された。福井大にお いてはFUCWGシリーズと呼ばれる。FUCW GIは、203 GHz, 0.5 kWの基本波発振管であり [11]、その後継機のFU CW GIAでは出力を1.5 kWまで上昇させた。FU CW GII, GIIIは2次高 調波発振で周波数395 GHzの電磁波を発振する [12,13]。FU CW GIIIでは0.4 kW出力を達成した。 FU CW GIVは2次高調波発振の周波数連続可 変機能を有する[17]。FU CW GVは基本波発振 で多くの周波数 (モード) に対してガウスビー ム出力できる [15]。発振周波数は162 GHzから 265 GHzの間で10の周波数でガウスビーム出力 を実現した。窓の透過率は波の周波数に依存す るが、2枚の窓を用いることで、あらゆる周波 数の波に対して、透過率をほぼ1にでき、10の すべてのモードに対して~1 kWの出力が得ら れた。

この他、パルス出力ながら100kW超の出力を

めざしたパルスジャイロトロンシリーズを開 発した[20-28]。このジャイロトロンはLHDにお ける協同トムソン散乱計測として用いること が目的である。

3. サブミリ波ジャイロトロンの応用

2008年の小特集「高出力テラヘルツ帯ジャイ ロトロン開発と応用展開」では、サブミリ波ジ ャイロトロンの応用の可能性についていくつ かの例が記載されている。散乱計測、電子スピ ン共鳴、動的核偏極を用いた核磁気共鳴、新材 料創成、セラミック焼結、素粒子物理、生体照 射等である。現在までに、動的核偏極を用いた 核磁気共鳴分光実験[29,30]をはじめとしてい くつかの応用は実現し、さらに新たなサブミリ 波ジャイロトロンの応用課題も生まれている。

素粒子分野へのサブミリ波照射の応用は、ポ ジトロニウムの超微細構造のエネルギー準位 差の直接測定として実現した[31]。ポジトロニ ウムは電子と陽電子からなる粒子で基底状態 では、そのスピンが平行、反平行の2つの状態 があり、そのエネルギー準位差は、周波数に換 算して203.4 GHz程度である。実験によるこの 精密な測定はこれまでも試みられてきたが、そ れらはゼーマン効果を用いたもので、結果が静 磁場の影響を受けている可能性があり、理論の 予想値ともわずかに異なっていた。そこで、ゼ ーマン効果を用いないで電磁波照射によるエ ネルギー準位差の直接測定を試み、その決定に 成功した。使用したジャイロトロンはFU CW GIである。

さらに最近、結晶にサブミリ波を照射するこ とにより、可視光を発する例が報告されている [32,33]。また、サブミリ波を動物に照射し、癌 進行の抑制実験[34]や、眼部ばく露に対する安 全性の閾値を求めるための実験も行われてい る他、サブミリ波照射によりヒト細胞の蛋白質 の繊維化を促進する報告もされる[35]など、今 後生命、生体分野へのサブミリ波照射の応用展 開が期待される。さらに、サブミリ波ジャイロ トロンを用いたプラズマの散乱計測も近々実 現される段階にある。

参考文献

[1] T. Idehara et al., IEEE Trans. Plasma Sci. **27**, 340 (1999).

[2] T. Idehara et al., Int. J. Infrared. Milli. Waves. 27, 319 (2006).

[3] M. Yu. Glyavin et al., Phys. Rev. Lett. **100**, 015101 (2006).

[4] 斉藤輝雄他 J. Plasma Fusion Res. **84**, 853 (2008).

[5] La Agusu et al., Int. J. Infrared. Milli. Waves. **28**, 315 (2007). [6] T. Idehara et al., Int. J. Infrared. Milli. Waves. **28**, 433 (2006).

[7] V. E. Zapevalov et al., Radiophys. Quant. Electron. **50**, 420 (2007)

[8] T.-H. Chang et al., J Appl. Phys. **105**, 063304 (2009).

[9] T. Idehara et al., J. Infrared Milli. Terahz Waves **31**, 763 (2010).

[10] T. Idehara et al., J. Infrared Milli. Terahz Waves **31**, 775 (2010).

[11] Y. Tatematsu et al., J. Infrared Milli. Terahz Waves **33**, 292 (2012).

[12] Y. Tatematsu et al., J. Infrared Milli. Terahz Waves **35**, 169 (2014).

[13] Y. Tatematsu et al., J. Infrared Milli. Terahz Waves **35**, 517 (2014).

[14] Y. Tatematsu et al., Phys Plasmas **21**, 083113 (2014).

[15] Y. Tatematsu et al., J. Infrared Milli. Terahz Waves **36**, 697 (2015).

[16] T. Idehara et al., J. Infrared Milli. Terahz Waves **36**, 819 (2015).

[17] Y. Tatematsu et al., 41st IRMMW-THz, H5P.21.13, 2016.

[18] A. C. Torrezen et al.,IEEE Trans. Plasma. Sci. **38**, 1150 (2010).

[19] R. J. Temkin, Terahz Sci. Tech. 7, 1 (2014).

[20] T. Notake et al., Rev. Sci. Instrum. **79**, 732 (2008).

[21] T. Notake et al., Plasma Fusion Res. **4**, 011 (2009).

[22] T. Notake et al., Phys. Rev. Lett. **103**, 225002 (2009).

[23] T. Saito et al., Plasma Fusion Res. 7, 1206003 (2012).

[24] T. Saito et al., Phys. Plasmas **19**, 063106 (2012).

[25] Y. Yamaguchi et al., Plasma Fus Res. 8, 1205165 (2013).

[26] Y. Yamaguchi et al., Nuclear Fusion **55**, 13002 (2015).

[27] Y. Yamaguchi et al., J. Instrumentation **10**, C10002, (2015).

[28] T. Saito et al., Plasma Fusion Res. **12**, 1206013 (2017).

[29] Y. Matsuki et al., J. Mag. Res. **225**, 1 (2012).

[30] Y. Matsuki et al., J. Mag. Res. **264**, 107 (2016).

[31] A. Miyazaki et al, Prog. Theo. Exp. Phys. **2015**, 011C01 (2015).

[32] K. Kato et al., Appl. Phys. Lett. **111**, 031108 (2017).

[33] Y. Toda et al., ACS Nano **11**, 12358 (2017).

[34] N. Miyoshi et al., J. Infrared Milli. Terahz Waves **37**, 805 (2016).

[35] S. Yamazaki et al., Scientific Reports **8**, 9990 (2018).

2