DT-ALPHA を用いた体積再結合進展過程における 電子・イオン・中性粒子間エネルギーフロー調査

Investigation of the energy flow among electron-ion-neutral in volumetric recombining plasma formation using DT-ALPHA device

高橋宏幸,小笠原健太, Boonyarittipong Peerapat,西京毅,清野智大,北島純男,岡本敦¹,飛田健次 Hiroyuki TAKAHASHI, Kenta OGASAWARA, Peerapat BOONYARITTIPONG, Takeshi SAIKYO, Tomohiro SEINO, Sumio KITAJIMA, Atsushi OKAMOTO¹, Kenji TOBITA

> 東北大院工,名大院工¹ Tohoku Univ., Nagoya Univ.¹

Detached divertor can be formed by utilizing electron-ion recombination (EIR). Reaction rate of the EIR becomes large in low electron temperature (T_e) region, typically below 1 eV. However, electrons that flow into divertor region have much larger T_e required for EIR. Therefore, electron energy removal is indispensable for enhancing EIR in a divertor plasma. It has been considered that electrons loose their energy through electron impact excitation, ionization, and elastic collision in relatively higher T_e region, whereas temperature relaxation with bulk ions becomes main process of electron cooling in the region where $T_e < 5$ eV. To understand the detached/recombining plasma formation comprehensively, the amount of energy transferred through these collisional processes should be evaluated. However, such a investigation has not been conducted because it requires ion temperature (T_i) measurement as well as T_e measurement. In our previous work, an ion sensitive prove (ISP) was installed and first T_i measurement was conducted [1]. In the present study, validation of T_i measurement by an ISP was investigated. Then the amount of energy transferred among electrons, ions, and neutrals was evaluated.

Experiment was conducted using an RF plasma device DT-ALPHA [2]. In this experiment, a helium ionizing plasma was produced and diagnosed. Before evaluating energy flow, validity of the ISP measurement should be confirmed. Therefore, $T_{\rm i}$ was also obtained by the Doppler spectroscopy $(T_{\rm i}^{\rm DP})$. Figure 1 represents the dependence of $T_{\rm e}$, $n_{\rm e}$, and $T_{\rm i}$ on RF heating power $P_{\rm H}$. As shown in Fig. 1, $T_{\rm i}^{\rm ISP}$ has similar value with $T_{\rm i}^{\rm DP}$ and showed a same trend on $P_{\rm H}$. This result indicates that T_i measurement by the ISP was consistent with that by the spectroscopy. And this confirmation enables us to evaluate electron-ion-neutral energy flow. We evaluated amount of the energy due to several collisional process (electron impact excitation, electron impact ionization, electronion recombination, electron-neutral elastic collision, electronion temperature relaxation, ion-neutral charge exchange, and ion-neutral elastic collision). In the presentation, we will report detail of the energy flow evaluation, as well as results of ISP measurement.

T. Kobayashi *et al.*, Plasma Fusion Res., **13**, 3401090
(2018).

[2] A. Okamoto et al., Plasma Fusion Res., 3, 059 (2008).

Figure 1: Dependence of $T_{\rm e}$, $T_{\rm i}^{\rm ISP}$, $T_{\rm i}^{\rm DP}$, and $n_{\rm e}$ on RF heating power $P_{\rm H}$. The target plasma was helium ionizing plasma.