周辺プラズマ・固体表面相互作用場におけるエネルギー輸送

Energy transport through the field of interaction between edge plasmas and material surfaces

梶田信¹, 澤田圭司², 田中宏彦³, 江角直道⁴ Shin Kajita¹, Keiji Sawada², Hirohiko Tanaka³, Naomichi Ezumi⁴

名大未来材料¹, 信州大工², 核融合研³, 筑波大学³ IMaSS, Nagoya Univ.¹, Eng., Shinshu Univ.², NIFS³, Tsukuba Univ.³

1. はじめに

ITERやDEMOを含む将来の核融合実験炉に おいては、熱負荷が集中するダイバータ板への 熱・粒子制御は重要な課題である。重要な制御 過程の一つとして、プラズマ中での熱粒子の消 滅(再結合)による、非接触プラズマの形成が 挙げられる。また、開放磁場構造中でのプラズ マ塊の放出現象など非拡散的輸送による熱・粒 子輸送も重要な現象である。これら、ダイバー タ領域の材料近傍でのプラズマの気相中での 反応の理解により、熱・粒子制御を進めていく 必要がある。

本発表では、周辺プラズマにおけるプラズマ と気相間の相互作用、固体表面との相互作用に 関連する近年の話題を幾つか紹介する。2節で は、直線型装置NAGDIS-IIにおけるプラズマブ ロップ輸送の様子を、3節ではヘリウムプラズ マが照射されナノ構造が形成された材料とプ ラズマとの相互作用、4節では現在進められて いる、水素の原子・分子過程モデリングについ て紹介する。

2. プラズマブロッブ輸送

周辺プラズマ領域の径方向輸送過程は、 Plasma Blob輸送などに起因する対流的な輸送 と乱雑過程(拡散)による輸送が混在した複雑 な輸送過程となっていると考えられる。このよ うな周辺プラズマ領域のプラズマ輸送を理解 するためには、フーリエ解析に代表される既存 の揺動解析手法に加えて、統計的解析手法を用 いた揺動解析が必要である。

境界プラズマ領域を模擬する直線型装置 NAGDIS-IIにおいて, Plasma Blob輸送と非 接触ダイバータ中の揺動との関係性を解明す るための実験として,本装置において磁場を横 切るプラズマ構造の二次元動的挙動を調査し た。 非接触ダイバータプラズマ生成時には,装置 終端にビューポートを設けての高速カメラ計 測が可能である。実験の結果,プラズマ柱を中 心に渦状に広がるプラズマ発光がE×Bドリフト 方向へ回転する様子が観測された(図1参照)。 得られた信号に多変量解析手法の一つである 経験的固有直交展開法を適用することで,主要 な空間構造の抽出を行った。

また接触状態時には、終端板へ到達する大き な熱流束のため上記計測は行えない。そこで NAGDIS-II上方および側面から二本の静電プ ローブを真空容器内に挿入し、二点同時計測さ れたイオン飽和電流揺動信号を解析した。揺動 中の特徴的な周波数成分に注目して時空間相 関を調べることで、図2に示すように二次元面 内を伝搬する二種類の構造の抽出に成功した。

図1 (a)計測系および(b)スナップショット.

図2 二つの周波数成分から計算した時空間作 関[1].

3. ナノ構造と熱パルスの相互作用

核融合炉における, Edge localized mode (ELM) に伴う間歇的な熱粒子負荷は,ダイバータ板の寿 命に著しい影響を与える。間歇的な熱負荷の影響 を調べるために,本研究ではMAGNUM-PSI(オラ ンダ,DIFFER)でのパルス重畳実験を実施した。 名古屋大学で事前にヘリウムプラズマ照射を行 い,ナノ構造を形成させたタングステン(W)試料 を,高密度でパルス放電が可能なMAGNUM-PSI でパルスプラズマ照射を行い,赤外の高速カメラ で温度変化を計測した。

図3 パルスプラズマ照射後のタングステンナノ 構造の走査型電子顕微鏡画像。

図4 表面温度計測結果。(a,c)は事前のプラズマ 照射なし,(b,d)はHeプラズマ照射によりナノ構造 が形成されたW試料。

図3は600 Jのパルスプラズマを照射した後の ナノ構造表面のSEM写真である[2]。ナノ構造同士 がくっついている様子が見て取れる。図4は表面 温度の計測結果である。ナノ構造が形成されてい ると、著しい温度上昇が見られている。しかし、 融点にまでは至っていない。恐らく、局所的に融 点近くまでの著しい温度上昇が起こり、表面構造 が変化していると考えられる。

4. 水素原子・分子モデリング

核融合プラズマの水素原子・水素分子の反応・空間的な流れ,粒子バランス・エネルギー バランスを理解することを目的として,水素原子・水素分子の内部状態を精密に考慮した核融 合周辺プラズマ解析コード(原子・分子衝突輻 射モデルおよび中性粒子輸送コード)の開発を 信州大学で行なっている。

プラズマ中の水素分子の各種反応の反応速 度係数は、例えば分子活性再結合など、分子の 電子基底状態の振動・回転状態に大きく依存す る。このため現在、電子・振動・回転状態を区 別(およそ4000の準位を考慮)した水素分子衝 突輻射モデル、およびこれを組み込んだ中性粒 子輸送コードの開発を進めている。図5は分子 スペクトルの計算例である。

また,非接触再結合ダイバータプラズマの解 析では,水素原子ライマン線の輻射輸送に伴い 再結合が妨げられることを考慮する必要があ るため,現在,輻射輸送を収束計算により扱う 水素原子衝突輻射モデルの開発も行っている。

これらのモデルを我々の研究室のRFプラ ズマでテストしつつ、モデルを用いてLHD等 の大型装置のプラズマの解析を行っている。

参考文献

[1] H. Tanaka, N. Ohno, Y. Tsuji, and S. Kajita, Contrib. Plasma Phys. 50 (2010) 256.

[2] S. Kajita, G. De Temmerman, T. Morgan, S. van Eden, T. de Kruif, and N. Ohno, Nucl. Fusion 54 (2014) 033005