24pC06

ふく射再吸収によるヘリウム原子2³S-2³P発光線形状の変化を利用した ヘリウム2³S準安定原子密度計測

Measurement of the helium 2³S metastable atom density by observation of the change in the 2³S-2³P emission line shape due to radiation reabsorption

四竈 泰一, 大金 修平, 飯田 洋平^{a)}, 蓮尾 昌裕 Taiichi Shikama, Shuhei Ogane, Yohei Iida, Masahiro Hasuo

京都大学大学院工学研究科,^{a)}分光計器 Graduate School of Engineering, Kyoto University,^{a)}Bunkokeiki

ヘリウム2³S準安定原子は大きな励起エ ネルギーと長い寿命を持つため、ペニング 電離や二次電子放出を介して放電プラズマ の生成・維持に寄与している.プラズマ中 で2³S原子が果たす役割を解明し、制御する ためには、その密度を定量化することが必 要となる.密度計測には2³S-2³P遷移(波長 1083 nm)が利用され、古くは自己吸収分光 法が、近年では半導体レーザ吸収分光法や レーザ誘起蛍光法が標準的な手法として採 用されている.本研究では受動分光法を用 いた新たな計測法[1,2]について報告する.

2³S-2³P発光線は,自然放出係数が等しく 吸収の振動子強度が異なる3本の微細構造 から構成される(表).プラズマ中で発光の 再吸収(ふく射再吸収)が起こる場合,観 測される発光線形状は2³S・2³P原子密度の 空間分布形状,発光・吸収の線形状,光学 深さの関数となる.光学深さ以外を適切に 仮定し,発光線形状から光学深さを求める ことで2³S原子密度を推定できる.

原子密度・温度の空間分布に関する仮定 が計測値に与える誤差を見積もった結果, 各々最大200%,10%程度であることが分か った.ただし,誤差は適切な仮定をおくこ とで低減できる.また,0.5 T以上の外部磁 場が存在する場合に吸収が約60%まで減少 することが明らかになった.

表. 2³S-2³P 遷移の波長*λ*, 自然放出係数*A*, 吸収の振動子強度*f*.

遷移	λ (nm)	$A(\times 10^7 { m s}^{-1})$	$f(\times 10^{-1})$
$2^{3}S_{1}-2^{3}P_{0}$	1082.909	1.0216	0.59902
$2^{3}S_{1}-2^{3}P_{1}$	1083.025	1.0216	1.7974
$2^{3}S_{1}-2^{3}P_{2}$	1083.034	1.0216	2.9958

本手法の適用可能性を実験により検証し た. 直流グロー放電管からの発光を近赤外 分光器(装置幅17.5 pm) [3]により計測した. 圧力501 Pa, 磁場強度0.497 mTの場合の発 光線形状を図に示す.発光線形状の計算時 には, 縮退がある場合の摂動法を用いて磁 気副準位間の遷移エネルギー、自然放出係 数,吸収の振動子強度を求めた.また,発 光・吸収の線幅は空間一様でドップラー広 がりの計測値に等しいとし, 密度の空間分 布形状はゼロ次のベッセル関数を仮定した. 図中の実線はフィッティング結果,τ10はプ ラズマ中心における量を用いて定義した 2^{3} S₁- 2^{3} P₀遷移の光学深さ、*T*は原子温度を表 す. 光学深さから求まるプラズマ中心の2³S 原子密度は10¹⁷-10¹⁸ m⁻³のオーダーであり, 密度計測の先行研究において類似の放電で 得られている値と同程度となった.

- [1] T. Shikama, et al., JJAP 53, 086101 (2014).
- [2] T. Shikama, et al., submitted to JPD.
- [3] S. Ogane, T. Shikama, et al., RSI 86, 103507 (2015).

