24aE09P

The intrinsic plasma rotation measurement and spectroscopic model analysis on QUEST

Yushi Maeda ${ }^{1}$, Hiroshi Idei 2, Kishore Mishore 1, Takumi Onchi ${ }^{2}$, Taichi Shikama ${ }^{3}$ et al.

IGSES, Kyushu Univ. ${ }^{1}$, RIAM, Kyushu Univ. ${ }^{2}$, Kyoto Univ. ${ }^{3}$

1. Introduction

Recently intrinsic plasma rotation in the co-current direction has attracted attention in tokamak fusion plasma with high performance [1]. The plasma scrape-off width has been examined by modeling grad B and curv B drifts against near-sonic flows along the open field lines [2]. In the non-inducting tokamak QUEST plasma, the co-current rotation has been observed in the inboard poloidal field null (IPN) configuration on QUEST [3].

In this research, mechanisms of the intrinsic rotation in the open magnetic field configuration is investigated. The uni- and bi-directional flow patterns are suggested by the model calculation.

2. Experimental apparatus and spectroscopy

A slab plasma is generated near the electron cyclotron resonance (ECR) layer by ECR waves ($f_{\mathrm{RF}}=8.2 \mathrm{GHz}, P_{\mathrm{rf}} \sim 60 \mathrm{~kW}, B_{\mathrm{tor}}=0.29 \mathrm{~T}$). The poloidal field $B_{\mathrm{pol}}(<50 \mathrm{G})$ is applied to generate rotation. Since B_{pol} is positive, the expected current flows in the clockwise direction viewing from the top.

The line spectrum of the impurity ions CIII $(464.74 \mathrm{~nm})$ is measured with a spectrometer. The fiber array (25 line of sights) views plasma tangentially at a tangent radius R_{tan} and is connected to the entrance slit [3]. The CCD is located at the exit slit. The profile of toroidal rotation $\left\langle V_{\operatorname{tor}}\left(R_{\tan }\right)\right\rangle$ is obtained for $\left|R_{\tan }\right|<1.1 \mathrm{~m}$.

3. Model analysis [4]

A local Gaussian spectrum $(\Phi(\lambda, r))$ at the radius r is given by the following formulation (1),

$$
\begin{equation*}
\Phi(\lambda, r)=\frac{\varepsilon(r)}{\sqrt{2 \pi \sigma_{\lambda}^{2}(r)}} \exp \left(-\frac{\left(\lambda-\lambda_{p}(r)\right)^{2}}{2{\sigma_{\lambda}}^{2}(r)}\right), \tag{1}
\end{equation*}
$$

here $\quad \sigma_{\lambda}=V_{t h} \lambda_{0} / c, V_{t h}=\sqrt{T_{i} / M_{i}}, \lambda_{p}=\lambda_{0}\left(1 \pm V_{\text {tor }} / c\right)$, $c:$ the speed of light, $\lambda_{0}:$ the center wavelength, and M_{i} : the ion mass. The local radiation emissivity, ion velocity and ion temperature are denoted by $\varepsilon, V_{\text {tor }}$ and T_{i}, respectively. The line of sight wavelength spectrum $I^{\text {cal }}\left(\lambda, R_{\mathrm{tan}}\right)$ is obtained by the integration of $\Phi(\lambda, r)$ along the line of sight representing by R_{tan}, described by Eq.(2),

$$
\begin{equation*}
I^{c a l}\left(\lambda, R_{\mathrm{tan}}\right)=\int_{R \tan } \Phi(\lambda, r) d r \tag{2}
\end{equation*}
$$

Finally, by Gauss fitting of $I^{\text {cal }}\left(\lambda, R_{\mathrm{tan}}\right)$ line of sight profiles of $\left\langle I^{\text {cal }}{ }_{\text {peak }}\left(R_{\mathrm{tan}}\right),\left\langle V_{\mathrm{tor}}\left(R_{\mathrm{tan}}\right)\right\rangle\right.$ and $\left\langle T_{\mathrm{i}}\left(R_{\mathrm{tan}}\right)\right\rangle$ are determined. By comparing them with observed ones the local profiles of $\varepsilon(r), V_{\text {tor }}(r)$ and $T_{\mathrm{i}}(r)$ are achieved.

4. Comparison of observations with the model

The $B_{\text {pol }}$ dependence of $\left\langle V_{\mathrm{tor}}\left(R_{\mathrm{tan}}\right)\right\rangle$ was examined for $0 \leqq B_{\mathrm{pol}} \leqq 50$ G. When $B_{\mathrm{pol}}=0 \mathrm{G}$, there was no rotation. Figure 1 shows the results $\left(\mathbf{A}: B_{\mathrm{pol}}=10 \mathrm{G}\right.$, $\left.\bullet: B_{\mathrm{pol}}=48 \mathrm{G}\right)$. Model calculations are indicated by dashed-lines. $\left\langle V_{\mathrm{tor}}\left(R_{\mathrm{tan}}\right)\right\rangle<0$ corresponds to the co-current rotation. Here $\boldsymbol{\Delta}$ and \bullet indicate the counter-current rotation and co-current ones. The latter was characterized by steep gradient at $R_{\mathrm{tan}} \sim$ 0.6 m . Figure 2 shows the local profile. Δ is explained by parabolic distribution ($V_{0}=0.8 \mathrm{~km} / \mathrm{s}$) and \circ is explained by the bi-directional flow pattern $\left(V_{\text {tor }}(r)=V_{0} \tanh \left(r-R_{0}\right)+V_{\text {offset }}, V_{0}=4 \mathrm{~km} / \mathrm{s}, V_{\text {offset }}=-2\right.$ km / s).

Fig. 1 Observation and calculation results

Fig. 2 Local rotation profiles at $B_{\mathrm{pol}}=10 \mathrm{G}$ and 48 G

5. Summary

The intrinsic rotation under the open magnetic field was observed and it was found that the direction of rotation reversed by increasing B_{pol} from counter to co-current direction. Model calculation suggests rotation flow is bi-directional at $B_{\mathrm{pol}}=48 \mathrm{G}$.

References

[1]J.E.Rice et al., Nucl. Fusion 47 (2007)1618-1624
[2]R.J.Goldston et al., Nucl. Fusion 52 (2012)013009
[3] K. Mishra et al., Nucl. Fusion 55 (2015)083009
[4]Y.Maeda, et al., 18th annual meeting of Kyushu
/Okinawa /Yamaguchi Branch of the JSPF, (2014)

