The intrinsic plasma rotation measurement and spectroscopic model analysis on QUEST

Yushi Maeda¹, Hiroshi Idei², Kishore Mishore¹, Takumi Onchi², Taichi Shikama³ et al.

IGSES, Kyushu Univ.¹, RIAM, Kyushu Univ.², Kyoto Univ.³

1. Introduction

Recently intrinsic plasma rotation in the co-current direction has attracted attention in tokamak fusion plasma with high performance [1]. The plasma scrape-off width has been examined by modeling grad B and curv B drifts against near-sonic flows along the open field lines [2]. In the non-inducting tokamak QUEST plasma, the co-current rotation has been observed in the inboard poloidal field null (IPN) configuration on QUEST [3].

In this research, mechanisms of the intrinsic rotation in the open magnetic field configuration is investigated. The uni- and bi-directional flow patterns are suggested by the model calculation.

2. Experimental apparatus and spectroscopy

A slab plasma is generated near the electron cyclotron resonance (ECR) layer by ECR waves ($f_{\rm RF}$ = 8.2 GHz, $P_{\rm rf} \sim 60$ kW, $B_{\rm tor}$ =0.29 T). The poloidal field $B_{\rm pol}(<50$ G) is applied to generate rotation. Since $B_{\rm pol}$ is positive, the expected current flows in the clockwise direction viewing from the top.

The line spectrum of the impurity ions CIII (464.74 nm) is measured with a spectrometer. The fiber array (25 line of sights) views plasma tangentially at a tangent radius R_{tan} and is connected to the entrance slit [3]. The CCD is located at the exit slit. The profile of toroidal rotation $\langle V_{\text{tor}}(R_{\text{tan}}) \rangle$ is obtained for $|R_{\text{tan}}| < 1.1$ m.

3. Model analysis [4]

A local Gaussian spectrum $(\Phi(\lambda, r))$ at the radius r is given by the following formulation (1),

$$\Phi(\lambda, r) = \frac{\varepsilon(r)}{\sqrt{2\pi\sigma_{\lambda}^{2}(r)}} \exp\left(-\frac{\left(\lambda - \lambda_{p}(r)\right)^{2}}{2\sigma_{\lambda}^{2}(r)}\right), \quad (1)$$

here $\sigma_{\lambda} = V_{th} \lambda_0 / c$, $V_{th} = \sqrt{T_i / M_i}$, $\lambda_p = \lambda_0 (1 \pm V_{tor} / c)$,

c : the speed of light, λ_0 : the center wavelength, and M_i : the ion mass. The local radiation emissivity, ion velocity and ion temperature are denoted by ε , V_{tor} and T_i , respectively. The line of sight wavelength spectrum $I^{\text{cal}}(\lambda, R_{\text{tan}})$ is obtained by the integration of $\Phi(\lambda, r)$ along the line of sight representing by R_{tan} , described by Eq.(2),

$$I^{cal}(\lambda, R_{tan}) = \int_{R_{tan}} \Phi(\lambda, r) dr$$
 . (2)

Finally, by Gauss fitting of $I^{cal}(\lambda, R_{tan})$ line of sight profiles of $\langle I^{cal}_{peak}(R_{tan}), \langle V_{tor}(R_{tan}) \rangle$ and $\langle T_i(R_{tan}) \rangle$ are determined. By comparing them with observed ones the local profiles of $\varepsilon(r)$, $V_{tor}(r)$ and $T_i(r)$ are achieved.

4. Comparison of observations with the model

The $B_{\rm pol}$ dependence of $\langle V_{\rm tor}(R_{\rm tan}) \rangle$ was examined for $0 \leq B_{\rm pol} \leq 50$ G. When $B_{\rm pol} = 0$ G, there was no rotation. Figure 1 shows the results (\blacktriangle : $B_{\rm pol}=10$ G, \bullet : $B_{\rm pol}=48$ G). Model calculations are indicated by dashed-lines. $\langle V_{\rm tor}(R_{\rm tan}) \rangle < 0$ corresponds to the co-current rotation. Here \blacktriangle and \bullet indicate the counter-current rotation and co-current ones. The latter was characterized by steep gradient at $R_{\rm tan} \sim 0.6$ m. Figure 2 shows the local profile. \triangle is explained by parabolic distribution ($V_0=0.8$ km/s) and \circ is explained by the bi-directional flow pattern ($V_{\rm tor}(r)=V_0 \tanh(r-R_0)+V_{\rm offset}$, $V_0=4$ km/s, $V_{\rm offset}=-2$ km/s).

5. Summary

The intrinsic rotation under the open magnetic field was observed and it was found that the direction of rotation reversed by increasing B_{pol} from counter to co-current direction. Model calculation suggests rotation flow is bi-directional at $B_{pol}=48$ G.

References

[1]J.E.Rice et al., Nucl. Fusion 47 (2007)1618–1624
[2]R.J.Goldston et al., Nucl. Fusion 52 (2012)013009
[3] K. Mishra et al., Nucl. Fusion 55 (2015)083009
[4]Y.Maeda, et al., 18th annual meeting of Kyushu /Okinawa /Yamaguchi Branch of the JSPF, (2014)