大電力ミリ波帯広帯域高速スイッチの数値計算による損失評価

Loss estimation of a high-power millimeter wave fast switching by numerical calculation

滝井啓太¹⁾,山口智輝¹⁾,長嶋浩司¹⁾,関口賢治¹⁾,三枝幹雄¹⁾,小田靖久²⁾,福成雅史²⁾,坂本慶司²⁾
K. Takii¹⁾,T. Yamaguch¹⁾,K. Nagashima¹⁾,K. Sekiguchi¹⁾,M. Saigusa¹⁾,Y.Oda²⁾,M. Fukunari²⁾,K. Sakamoto²⁾

¹⁾茨大工,²⁾原子力機構 ¹⁾Ibaraki Univ.,²⁾JAEA

1. はじめに

トカマクプラズマの不安性である新古典ティアリ ングモードの安定化には、電子サイクロトロン電流 駆動方式による磁気島 O 点への局所的な電流駆動が 有効である。本研究グループは、O 点への局所的な 高効率電流駆動に有効な大電力ミリ波帯広帯域高速 スイッチを開発するため、リング共振器内で発生す るジュール損失を評価してきた[1]。本研究では、ハ ーフミラーのジュール損失を詳細に解析した結果を 報告する。

2. リング共振器型高速スイッチの原理

高周波入力を P₁とすると、周波数がリング共振器 の共振周波数でない時、P₂から出力され、共振周波 数の時、リング共振器内に電力が蓄積され P₄から出 力される。この原理を用いジャイロトロンの発振周 波数を変調することにより高速な電磁波のスイッチ ングが可能になる。

図 1. リング共振器型スイッチと 金属ハーフミラーの概念図

今回はこの共振器内部で電磁波が蓄積された時のジ ュール損失を算出した。

3. シミュレーションモデルとジュール損失

シミュレーションは FDTD 法により行った。円形 コルゲート導波管の内直径は計算機の主記憶容量 (18GB)の制限から、実寸の約 1/3 である直径 21mm と仮定した。図 1 に示すような金属ハーフミラーは 長いスロットが全面にあり、厚み 1.7mm、スロット 周期 1.5mm、スロット幅 0.6mm 材質はアルミ合金を 想定し、導電率 3.445×10⁷を用いて損失を評価した。 リング共振器内を電磁波が 9 周した場合の Miter bend 1 入射側 Half mirror 1 共振器内側のジュール損 失を次の図 2 に示す。

Half mirror 1(inside)

図 2.マイターベンド及びハーフミラーのジュール損失

表1 に入射電力に対する各部品のジュール損失の割 合を示す。ハーフミラーの損失はスロット内部、共 振器内外側の損失を合わせて評価した。

表 1. 各部品のジュー	ル損失
--------------	-----

Miter bend 1	Miter bend 2	Half mirror 1	Half mirror 2
0.192%	0.163%	1.195%	1.423%

表 2 に Half mirror 1 の各部分の入射電力に対するジ ュール損失の値を示す。

表 2. Half mirror1 各部分のジュール損失

• •		
共振器側	スロット内部	入射側
0.343%	0.765%	0.0867%

以上から、ハーフミラーは表面よりもスロット内部 のジュール損失が大きいことが分かる。

まとめ

Miter bend 1

大電力ミリ波帯広帯域高速スイッチの金属ハーフ ミラーのジュール損失を評価した。その結果、ハー フミラースロット内部のジュール損失の割合が大き いことが分かった。

参考文献

[1]K. Atsumi, et al., Plasma and Fusion Res.8, 2405077(2013).