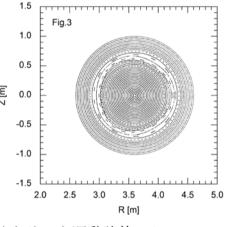
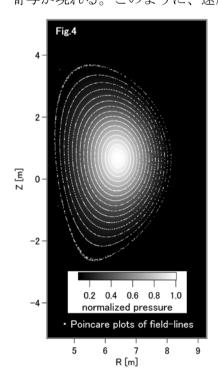

トロイダルプラズマの現実的なMHD平衡に対する輸送係数を評価する δfシミュレーションコードの開発


Development of a of simulation code for estimating transport coefficients of realistic toroidal plasmas

菅野龍太郎, 沼波政倫, 鈴木康浩, 佐竹真介 Ryutaro KANNO, Masanori NUNAMI, Yasuhiro SUZUKI, Shinsuke SATAKE

核融合科学研究所 National Institute for Fusion Science


共鳴摂動磁場 (RMP) が静的に印加された領域 における高温プラズマの挙動の理解は、核融合 プラズマの閉じ込め性能の改善において重要 であるが、近年、その理解が不十分であること が明らかになってきた。本研究では、トロイダ ルプラズマの衝突輸送現象に対するRMPの与え る影響について、ドリフト運動論的シミュレー ションを用いて調べている。これまでの成果と して、熱拡散係数は $\chi_r \sim \chi_r^{NC} + cqR_{ax}V_{th}|\delta B_r|^2/|B_{ax}|^2$ の ように評価できることを明らかにした。係数c 以外の熱拡散係数のパラメータ依存性は、 Rechester-Rosenbluthの磁力線拡散理論と同 じであることに注意。この係数cは、磁力線拡 散理論ではπであるが、シミュレーションでは それよりもはるかに小さな値になり、係数cの パラメータ依存性は現時点では未知である。こ れまでの研究では円形トカマク磁場を主に用 いていて、依存性を調べるためのパラメータ領 域が狭かったため、現実的で多様なトーラス型 磁場配位における輸送計算を行うことが必要

で図び背ズ度分定場すの法あ1図景マ・布しはる下にるおは2プの温を、無仮、基。よ、ラ密度固電視定がづ

くドリフト運動論的シミュレーションにより 求めた速度空間における案内中心分布の動径 方向熱拡散への寄与である。図3のように1モードの微弱なRMPを円形トカマク磁場に印加す ると、図1から変化して図2のようにリップルの 寄与が現れる。このように、速度空間における

分布の構造 を詳細に求 めることが できること を利用し、 係数cの磁場 形状依存性 を調べるた め、現実的 なトカマク 磁場 (図4) に RMP を 印 加し、円形 トカマク磁 場の場合の 熱輸送と比 較できるよ う、準備し ている。