30E02P

中高密度ヘリカルプラズマにおける 両極性径電場・新古典エネルギー拡散の検証と装置間比較 Inter-Machine Validation Study of Neoclassical Transport Modeling in Medium- to High-Density Stellarator-Heliotron Plasmas

M.Yokoyama, A.Dinklage¹, J.L.Velasco², et al., LHD Experiment Group, W7-AS Team¹, TJ-II Team²

National Institute for Fusion Science, Japan, Max-Planck-Institut fur Plasmaphysik, Germany¹, The National Fusion Laboratory, CIEMAT, Spain²

In order to test a recently concluded benchmarking of calculations of NC transport coefficients [1], and extending previous studies of electron energy transport at low densities [2], this study compares experimental findings with NC transport predictions for medium- to high-density S-H plasmas.

The focus is put on recent experiments conducted in LHD and TJ-II also involving findings from Wendelstein 7-AS (W7-AS) [3]. In 3D magnetic configurations, radial electric fields (E_r) must arise to satisfy the ambipolar condition which is not intrinsically satisfied as axisvmmetric tokamaks. in In the long-mean-free-path (lmfp) at sufficiently high densities above a few times 10^{19} m⁻³, E_r is well predicted by the NC ambipolarity condition and is found to be in the so-called ion-root. Er has particular impact on the energy fluxes of the ions.

Dedicated experiments performed in LHD and TJ-II can be summarized as follows. In LHD, discharges with high heating power with $n_e>3x10^{19}$ m⁻³, $T_{e,i}>1$ keV have been obtained. The variation of the heating power (ion/electron heating ratio as well), density and magnetic configuration forms a systematic database. In TJ-II, obtained parameters have been $n_e\sim4x10^{19}$ m⁻³, $T_e\sim300$ eV and $T_i\sim120$ eV. The NC particle and energy fluxes are evaluated by convoluting the mono-energetic transport coefficients calculated by DKES [4] in W7-AS and TJ-II, and by DGN/LHD [5] in LHD.

It is found that the measured negative E_r is consistent with NC ambipolar ion-root conditions for all devices. Higher density and comparable temperatures towards reactor-relevant S-H plasmas tend to weaken the bifurcation capability of E_r as reported for electron-root conditions [2]. Differently, in TJ-II the experimentally observed E_r is more negative than the predicted NC ambipolar Er.

Steady-state energy balance analyses were performed using the integrated transport code, TASK3D [6] for LHD, and by ASTRA [7] in W7-AS, TJ-II. For the experimentally determined particle and energy fluxes were compared to NC fluxes with transport coefficients from DKES and found to be consistent with NC theory up to 2/3 of the minor radius. For an example of LHD discharge, it is found that the ion energy flux is close to the NC energy flux up to 2/3 of the plasma radius. However, since the NC energy flux has a strong dependence on the value of E_r, more systematic survey utilizing the database would be required for a conclusive statement. In TJ-II, the ion energy flux has been found to be beyond the prediction of local NC theory.

References

- [1] Beidler C D et al., Nucl. Fusion 51 (2011) 076001.
- [2] Yokoyama M et al., Nucl. Fusion 47 (2007) 1213.
- [3] Baldzuhn J et al., Plasma Phys. Control. Fusion 40 (1998) 967.
- [4] Hirshman S P et al., Phys. Fluids 29 (1986) 2951.
- [5] Wakasa A et al., Contrib. Plasma Phys. 50 (2010) 582.
- [6] Yokoyama M et al., Plasma and Fusion Res. 7 (2011) 2403011.

[7] Pereverzev GV, IPP 5/98, Max-Planck Institut für Plasmaphysik (2002).

[8] Tribaldos V et al, Plasma Phys. Control. Fusion 47 (2005) 545.

Acknowledgement

This work has been conducted based on IEA Implementing Agreement on Cooperation in Development of Stellarator-Heliotron Concept <u>http://iea-shc.nifs.ac.jp/</u>. It has been supported by NIFS/NINS under the project, "Promotion of the International Collaborative Research Network Formation".