30D35P

水素負イオンの体積生成過程の実験的検討 Experimental Examination of Volume Production Process of H⁻ Ions

<u>Hiroshi Takemura¹</u>, Toshirou Kasuya¹ and Yasuyuki Kimura¹, Motoi Wada¹ <u>竹村</u>浩志¹, 粕谷 俊郎¹, 木村 恭之¹, 和田 元¹

¹Graduate School of Engineering, Doshisha University 1 Tatara Miyakodani, Kyotanabe-shi, Kyoto 610-321, Japan ¹同志社大学大学院工学研究科 〒610-3210 京田辺市多々羅都谷1-3

1. 研究概要

水素プラズマから水素負イオンを効率良く引き 出す事は、核融合プラズマの中性粒子入射加熱に おいて特に重要である.また、純粋に体積生成過 程でH電流量が十分得られるなら、将来の核融合 システムはよりシンプルなものとなる.そこで、 本研究では、光脱離計測により低速電子領域内の 水素負イオンの空間分布の調査を行う.

2.実験装置

本研究に用いたイオン源の概略図を Fig. 1 に示 す.イオン源は、内径 160 mm,長さ 300 mm の円 筒形である.また、Sm-Co 磁石をイオン源壁面 に 16 個設置して、マルチカスプ磁場構造を形成し た、体積生成型負イオン源となっている.高速、 低速電子領域を作るために磁気フィルター磁場を イオン源に加える.今回は電磁石を用いて外部磁 気フィルターとして利用している.イオン源壁面 の平均磁場強度は、約 300 Gauss であり、熱陰極 放電で用いるフィラメントは、Ø 0.3 mm、長さ 80 mm のタングステン線を用いており、マルチカス プ磁場に対して並行になるようにフィラメントを 曲げて、ピッグテール型の構造とした.2 本のフ ィラメントカソードを用いる事によって、イオン 源内の空間的均一性を図っている.

水素負イオンの測定のためのプローブはイオン 源上部から挿入させ、半導体レーザと同軸にする ために先端をL字形に曲げた構造を用いている. VUV分光器は、イオン源の縦、三カ所繋げる事が 可能であり、高速及び低速電子領域での振動励起 分子の生成率を求める事ができる構造である.

3.実験方法

Fig. 1.に示すようにイオン源中央部に対して逆 側の部分での,水素負イオンの密度測定を行うた めに、半導体レーザー(532 nm)を照射し、飽和電 子領域にバイアスされたプローブに流れる信号の 検出を,位相検出法を用いて行った.信号検出の 際には数10 kHz 程度以下の低周波領域において, ホワイトノイズが発生するために、レーザーを振 幅変調し、これより得られるプローブ信号を、バ ンドパスフィルター回路を介してロックインアン プにより検出した.

イオン源中央部での振動励起分子の生成率を評価するため、VUV発光スペクトルの検出系をFig. 2 に示すように構築した. ライマンα帯を除いた バンドシグナルである 109 nm から 160 nm の振 動励起分子のスペクトル強度を積分する事により、 振動励起分子の相対的な生成率を求める.

Fig. 1 Schematic negative ion source.

Hydrogen Negative Ion Source

Fig.2. Vacuum system arrangement for VUV spectroscopic