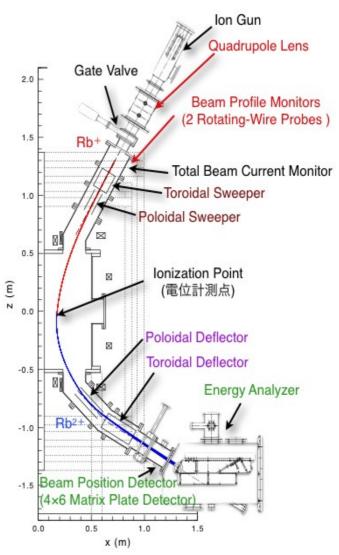
30D04P

LATEプラズマの電位計測用イオンビームプローブの開発: 電位計測位置の設定と制御

Development of the ion beam probe for plasma potential measurement in LATE : setting and control of measurement points

勝間淳¹, 田中仁¹,重村樹¹, 打田正樹¹, 前川孝¹, 井口春和² KATSUMA Jun¹, TANAKA Hitoshi¹, SHIGEMURA Tatsuki¹, UCHIDA Masaki¹, MAEKAWA Takashi¹, IGUCHI Harukazu²


¹京都大学エネルギー科学研究科, ²核融合研 ¹Graduate School of Energy Science, Kyoto University, ²NIFS

LATE装置においてマイクロ波球状トカマクプラズマの電位分布を計測するために、アルカリ金属イオン (Na+, K+, Rb+) を用いたイオンビームプローブの開発を行っている。右図にイオンビームプローブシステムとビーム軌道の計算例を示す。Ion Gunから加速電圧VGUNで射出された1次ビームはQuadrupole Lensで絞られ、Toroidal Sweeper,Poloidal Sweeperの電極間電圧VTS,VPSによってトロイダル方向、ポロイダル方向に偏向されLATE真空容器内に入射される。プラズマ中で電離して生じた2次ビームは下部ポートのPoloidal Deflector,Toroidal Deflectorの電極間電圧VPD,VTDによってEnergy Analyzerのスリットへ導かれる。

LATE装置は低アスペクト比トーラスなので 入射ビームのわずかなトロイダル方向の速度 成分でもトロイダル方向にビームが大きく広 がってしまうという問題がある。そのため新し くQuadrupole Lensを取り付け、トロイダル方 向の広がりを抑えることを試みる。

電位計測点はイオン種、 V_{GUN} , V_{PS} , V_{TS} , V_{PD} , V_{TD} を変えることによって設定・制御するが、その値はビーム軌道の数値計算によって決定する。図の例は Rb+イオンを, $V_{GUN}=14keV$ で加速して入射した時, $V_{TS}=0V$, $V_{PS}=-200V$, $V_{PD}=780V$, $V_{TD}=0V$ に設定すれば電位計測位置は (R,Z)=(17.56cm,-2cm)となる事を示している。

また、Toroidal Sweeperの前に2つの Rotating-Wire Probe型Beam Profile Monitor を、Energy Analyzerスリットの前に4×6 Matrix Plate Detectorを置き、1次ビームでのテストを行って数値計算結果の検証を行っている。

IBP システム概略図:Rb+, $V_{GUN}=14keV$, $V_{PS}=-200V$, $Z_i=-5cm$ (It=90kAT, $I_P=0$, $I_V=0$)での軌道計算例