28pB01

高速点火レーザー核融合実験用クライオジェニックターゲットの開発 Development of cryogenic targets for Fast Ignition Laser Fusion Experiment

岩本晃史、藤村 猛*、中井光男*、乗松孝好*、坂上仁志、白神宏之*、疇地 宏* A. Iwamoto, T. Fujimura*, M. Nakai*, T. Norimatsu*, H. Sakagami, H. Shiraga*, H. Azechi*

核融合研、*阪大レーザー研 NIFS, *ILE, Osaka Univ.

はじめに

大阪大学レーザーエネルギー学研究センタ ー(以後、レーザー研)では高速点火方式によ るレーザー核融合の実証を目的とした高速点 火実証実験(FIREX)プロジェクトが進められ ている。爆縮用激光XII号と点火用LFEXの2つ のレーザーシステムを用い、これまでに約1keV の加熱に成功している。現在、燃料ターゲット として重水素化ポリスチレンシェルを使用し て実験が行われている。将来の核融合炉開発を 見据えると固体D₂又はDT燃料を充填したクライ オジェニックターゲットの開発が必要である。

レーザー研と核融合科学研究所(以後、核融 合研)では 2003 年度から双方向型共同研究の 枠組みの下、FIREX 用クライオジェニックター ゲットの開発を進めている。ターゲットはプラ スチックの球形シェルに点火用レーザーを導 くコーンガイド及びガラス製燃料導入管が取 り付けられた構造である。ターゲットの製造・ 組立と共に、そのシェル内面に~20µm厚の固体 燃料層を均一に形成する手法の開発が課題と なっている。FIG. 1 に典型的なターゲットの 仕様を示す。米国などで進められている中心点 火方式用ターゲットとは異なり球対称性を持 たない独特のターゲット構造のため、既存技術 を応用できず、燃料層形成には独自の研究開発 が必要である。そこで現在、2つの燃料層形成 手法:フォーム法、コーンガイド加熱法を用い た開発を進めている。本報告では燃料層形成技

FIG. 1. Typical FIREX target.

術開発とその関連研究の現状と今後について 述べる。

フォーム法の実証研究

中心点火方式によるレーザー核融合炉用タ ーゲットに応用するために米国の研究者が 1980年代に提案した方法[1]であり、現在も開 発が続けられている。我々は、その概念をFIREX 用ターゲットに最適化する検討を行っている [3]。フォーム法では燃料層として必要な厚さ など仕様を持つフォーム球殻をあらかじめ形 成し、そのスポンジ状フォーム材に毛細管現象 を利用して液体燃料を均一にしみ込ませ、その 後、固化する。その結果、仕様通りの固体燃料 層が完成する。重力などの影響を無視できるた め、燃料層の均一性はフォーム材自体が保証す るが、液体と固体間の密度差分の気泡が含まれ た固体燃料層が形成される可能性[2]が指摘さ れており、その解決が本手法の重要課題となっ ている。Hoの場合、密度差から約11%の気泡が固 体内に残留する可能性がある。我々はフォーム 材に染み込んだ液体燃料を固化させる際に気 泡の形成を抑える手法を新たに発案し、その実 証専用の試料を作製し、原理実証実験を行った。 その結果、そのフォーム試料に対し約98%の固 体H₂充填率を達成した。FIG. 2 にその試料の詳 細を、FIG.3 にその固化の様子を示す。試料の 上下に温度差を発生させた後、試料全体の冷却 温度を固化点以下に徐々に下げることで、下方 から固化が始まり上部へと進展させることに 成功した。その固化部先端へは毛細管現象によ り液体が継続的に供給され気泡の発生を抑え ることができる。今回の充填率は固体Hの屈折 率測定から評価されている。この手法を利用し た実ターゲットへの高充填率化手順はANSYSを 使用したシミュレーションにより確立してお り、レーザー研において供給が可能となった 500µmフォームシェルを取り付けた実サイズタ ーゲットを用いて最終的な固体H。層形成実証を

FIG. 2. Schematic of a prism to demonstrate the moving solidification front and preventing void spaces in solid H_2 . Two prisms with and without a foam material between the glass plates were prepared.

FIG. 3. Demonstration of the moving solidification front. At the front, the density gap was observed by an interferometer.

コーンガイド加熱法の実証研究

我々独自のアイデアにより進めているコー ンガイドを利用した燃料層形成手法である。冷 却されているコーンガイド付プラスチックシ ェル内に液体燃料を導入すると、表面張力の影 響によりコーンガイド周辺から液体燃料が満 たされる。その状態を保ちつつ降温固化させる。 FIG. 4(a) では試作ターゲット内のコーンガイ ド周辺に形成された固体 H。を見ることができ る。その後、コーンガイドを加熱する。その周 辺の固体燃料が少しずつ昇華し、その他のシェ ル内で均一に再固化する。その結果、コーンガ イド周辺を除くシェル内には、ほぼ均一な固体 燃料層が形成された状態となる。次に固体燃料 が不在となったコーンガイド周辺に燃料を追 加するために、ターゲット全体を一時的に融点 まで昇温する。すでに形成されている固体燃料 層自身の熱容量により固体状態が保たれてい る間に、コーンガイド周辺に液体燃料を追加、 再度降温固化することで全シェル内に固体燃 料層を形成することができる。これまでに直径

2mm のポリスチレン(PS)シェルを用いた試作タ ーゲット内に 155~192µm の固体 H₂層を形成さ せることに成功し、本手法を実験的に実証した。 FIG. 4(b)では均一に形成された固体 H₂層を見 ることができる[4]。現在は冷却時の機械的な 課題[5]を解決した直径 500µm の実サイズ PS シ ェルターゲットを用いた固体 H₂層の形成実証 を行っている。

FIGs.4 (a) and (b). Demonstration of the cone guide heating method. Solid H_2 was accumulated around the cone guide as shown in photo (a). Eventually, a 155-192 µm thickness solid H_2 layer was formed in the 2 mm PS shell as shown in photo (b).

まとめ

レーザー研と核融合研の双方向型共同研究 により FIREX 用クライオジェニックターゲット の開発が進められている。これまでにフォーム 法並びにコーンガイド加熱法による燃料層形 成に関する原理的な実証が終了し、その開発は 実ターゲットでの実証という最終段階に至っ ている。また、その開発の進行に合わせ、クラ イオジェニックターゲットを使用したレーザ ー核融合統合実験に向けた準備がレーザー研 において進められており、いずれかの手法によ り完成したクライオジェニックターゲットを 数年後のレーザー実験に使用する予定である。

- Sacks, R. A., et al., "Direct drive cryogenic ICF capsules employing D-T wetted foam," Nucl. Fusion 27 (1987), pp.447-452.
- [2] Hoffer, J. K., et al., "Beta-layering in foam-lined surrogate IFE targets," Fusion Sci. Technol. 50 (2006), pp.15-32.
- [3] A. Iwamoto, et al., "FIREX Foam Cryogenic Target Development - Attempt of Residual Voids Reduction with Solid Hydrogen Refractive Index Measurement -," Proceedings of 24th IAEA Fusion Energy Conference, San Diego, USA, IFE/P6-18.
- [4] A. Iwamoto, et al., "Study on possible fuel layering sequence for FIREX target," J. Phys.: Conf. Ser. 244 (2010), 032039.
- [5] A. Iwamoto, et al., "Mechanical issues of FIREX target under cryogenic environment," Plasma Fusion Res. 6 (2011), 2404070.