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| nstability analysis of spherical converging shock wave
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The shock wave is a most basic and important  sonic,whereé, is a specific constant of the system

hydrodynamic phenomenon in many different Only an appropriate complex value of satisfies
branches of high energy density physics. In this condition as the eigenvalue.

converging geometries such as cylinders and A novel compression scheme is proposed, in
spheres, a shock wave is cumulatively strengthenedvhich hollow targets with specifically curved
towards the center and exhibits asymptotically structures initially filled with uniform matter, ar

self-similar behavior. The self-similar solutionaf  driven by converging shock wave. A linear stability
spherical converging shock wave was first reported analysis for a spherical geometry reveals a new
by Guderley [1] dispersion relation with cut-off mode numbers as a
Following Gurderley[1] and using the notations function of the specific heat ratio, above which
of Ref.[2], we introduce the self-similar coordieat eigenmode perturbations are smeared.
&=rIR=r/Alt]*, and the self-similar fluid variables, @ We have presented the rigorous linear
v= EVo(f) . p=poGo(§) ,and yZ = (2)200(5) ,  perturbation theory, for spherical converging shock
where Vo, Go, and Zo, denote thpe dimensionless Concerning the stability, it has_ been reyealed dhat
velocity, density, and squared sound speedCUt-off mode number depending opexists, over
respectively, with being the initial density. which eigenmode perturbations diminish.
The perturbation quantities are postulated to be
expanded in terms of spherical harmonv%o,y). [1] G. Gu_derley, Luftfahrfo_rschung 19, 302 (1942)_
We then introduce such a 1-st order variable as thé?] Zeldvich, Ya. B., & Raizer, Yu. P. 1960, Physics of
total perturbation amplitude of the shock surface i~ Snock Waves and High Temperature Hydrodynamic
given by RO[L+3()7:'Y™ with normalized Phenomena(New York: Academic)
"_mode amplitude11', where is unkown growth [3] I\P/Ih Mulrja}kaml,;\lazgoa(;tgmzoggéNucl. Instrum. Methods
rate. Moreover we formulate the other variables ys. Plasmas( )
such as the radial velocits (r/t)[Vot+ 2(-t/7)°V1'Y,™,
the density p = p, [Go+2(-t/7)’G,Y™], and the
squared sound speec®=(r/t)Zo+2Z(-t/0)°Z.Y,").
Theo is to be found as an eigenvalue by solving the
first-order system, derived by linearizing the one
dimensional hydrodynamic system. Meanwhile the
transverse velocity, is not used below in its
explicit form. Instead, its divergence is used as a
tractable form,r?v, -v_=(r/t)X(-t/)°’D,'Y,", where 7 i I T/ S
v, denote the transverse divergence operator with Spherical harmonic mode | Spherical harmonic mode |
respect to the polgr/azmuthal anglégJ. . Fig. 1: Growth rate of perturbations in a spherical
Then the one dimensional hydrodynamic system, conyerging shock: (a) Ref-(b) Im()
the conservation of mass, momentum, and entropy,
is reduced to the perturbed system, which is
numerically integrated. The integration is
terminated at the singular point, such all the
integrated corves for the perturbed quantities
smoothly pass the singular poigt=¢§,, as
observed for the background quantities. The fluid
velocity relative to the line witl¥ = &, become
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