28E22P

 (γ, n) 反応を用いた高エネルギーガンマ線スペクトロメーターの開発 Development of the high energy gamma-ray spectrometer by using (γ, n) reactions.

坂田匠平^a 有川安信^a 小島完興^a 安部勇輝^a 長井隆浩^a 井上裕晶^a 加藤龍好^b 中井光男^a 白神宏之^a 疇地宏^a

S.Sakata^a Y.Arikawa^a S.Kojima^a Y.Abe^a T.Nagai^a H.Inoue^a R.Kato^b M.Nakai^a H.Siraga^a H.Azechi^a

大阪大学レーザーエネルギー学研究センター^a ILE,Osaka U^a 大阪大学産業科学研究所^b ISIR,Osaka U^b

高速点火核融合実験において高エネルギー領 域のX線スペクトルを測定することが重要とな っている。本研究では3MeV付近から50MeV付 近の領域のX線スペクトロメーターの開発を行 った。計測器は核融合反応により生じたγ線を 複数の金属材料によって(γ,n)反応を介して中 性子に変換し、この中性子をbubble detectorで 検出する構造になっている。金属種によって (γ, \mathbf{n}) 反応のピーク値及び閾値が異なる。(Fig.1) 例えば、鉛のチャンネルでは(γ,n)反応断面積 のピーク値である13MeV付近のγ線のスペク トルを測定している。本計測器は(γ,n)反応に より生じた中性子をbubble detectorで検出して いるのでそれ以外の中性子を遮蔽する必要が ある。そのために遮蔽材としてデルリンでコン バーター及びbubble detectorを囲む構造に設計 をした(Fig.2)2012年に行われた高速点火核融合 実験において本計測器の性能評価を行い、各チ ャンネルにおいて有意な信号が得られた。 これらの信号について入念なバックグラウン ドの解析を行い、初めて50MeVまでのγ線スペ クトルを計測した。本講演では測定装置の設計、 バックグラウンド解析、実験データについて報 告する。

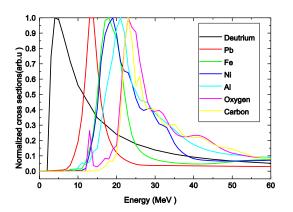


Fig.1 (γ,n)反応断面積

Fig.2 測定装置外観