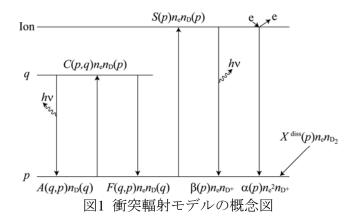
28E11P

分子過程を考慮した衝突輻射モデルを用いたFRCプラズマの分光計測

Plasma spectroscopy with Collisional Radiative model in consideration of molecular processes on FRC plasmas


松澤芳樹¹, 浅井朋彦¹, 平野洋一¹, 高橋努¹ Yoshiki Matsuzawa¹, Tomohiko Asai¹, Yoichi Hirano¹, Tsutomu Takahashi¹

日大理工¹ College of Science and Technology, Nihon University¹

磁場反転配位(<u>F</u>ield-<u>R</u>eversed <u>C</u>onfiguration : FRC) プラズマ研究において、中性粒子との相互作用はそ れほど研究されてこなかった。理由として、FRC の 配位持続時間が短いため中性粒子のリサイクリング を考慮する必要がなかったことなどが挙げられる[1]。 しかしながら近年、回転磁場 (Rotating Magnetic Field: RMF) による生成、維持による長寿命化[2]、 高β値の CT による衝突合体生成、多重極磁場を用い た n=2 モード回転不安定性の抑制による長寿命化[3]、 背景粒子を備えた領域中を高速でFRCプラズマを移 送する際に粒子供給や配位維持時間の伸長などの効 果が示唆されたり[4]、接線方向からの中性粒子ビー ム入射(Tangential Neutral Beam Injection: TNBI)に よる維持・加熱の際、FRC プラズマ周辺の中性粒子 がパワー付与率に影響を与えるシミュレーション結 果が得られている[5]など、FRC 研究において中性粒 子の存在が重要になっていると考えられる。

これまで、中性粒子とFRCプラズマの相互作用について調べるため、水素原子の衝突輻射(Collisional Radiative: CR)モデルと分光計測を用いて、中性粒子数密度の見積もりを試みて来た。現在までに、FRC生成前後の中性粒子の変化量は他の計測結果とオーダー程度の一致は得られているが、平衡配位時のFRCプラズマと周辺プラズマ中の中性粒子の相互作用を議論するには十分とは言い難い。また、現在使用やモデルには分子による寄与が含まれていないが、例えばダイバータプラズマ領域においては水素分子が関与した反応が重要となっている[6]。

本発表では、これまでのCRモデルに水素分子からの寄与として電子衝突解離励起反応過程(図1の $X^{diss}(p)n_en_{D2}$)を考慮したモデルを考える[7,8]。図2は水素原子の電子衝突励起速度係数 $K^{diss}(p)$ と水素分子の電子衝突解離励起速度係数 $X^{diss}(p)$ を示している[7-10]。このような分子過程を考慮したモデルとしないモデルを比較する。また、分光計測の結果と併せて中性粒子密度の見積もりを行い、FRC生成過程の中性粒子数の変化およびFRC周辺プラズマ中の中性粒子数の変化を調べる。

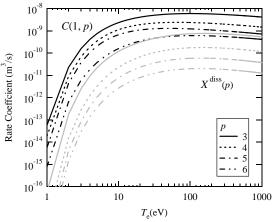


図2 電子衝突励起速度係数C(1,p)と電子衝突解離励起速度係数 $X^{\text{diss}}(p)$

- [1] D. J. Rei, Pro. of 6th US-Japan workshop, 214, (1984)
- [2] H. Y. Guo et al., Phys. Plasmas 15, 056101 (2008)
- [3] H. Y. Guo et al., Phys. Plasmas 18, 056110 (2011)
- [4] Y. Matsuzawa *et al.*, Phys. Plasmas, **15**, 082504 (2008)
- [5] T. Takahashi *et al.*, J. Plasma Fusion Res. Vol.**82**, 775 (2006)
- [6] N. Ohno, J. Plasma Fusion Res. Vol.75, 1162 (1999)
- [7] T. Fujimoto *et al.*, J. Appl. Phys. **66**, 2315 (1989)
- [8] K. Sawada et al., J. Appl. Phys. 78, 2913 (1995)
- [9] ALADDIN, http://www-amdis.iaea.org/ALADDIN/
- [10] GENIE, http://www-amdis.iaea.org/GENIE/