27E44P

熱アニーリングによるナノ構造中のHeバブル消失特性

Characteristic of He Bubble Disappearance in the Tungsten Nano Structure by Thermal Annealing

矢嶋美幸¹、梶田 信²、大野哲靖¹、時谷政行³、吉田直亮⁴ Miyuki YAJIMA¹, Shin KAJITA², Noriyasu OHNO¹, Masayuki TOKITANI³, Naoaki YOSHIDA⁴

> 名大院工¹、名大エコトピア研²、核融合研³、九大応力研⁴ Grad. School of Eng. Nagoya Univ. ¹, EcoTopia Sci. Inst. Nagoya Univ. ², NIFS³, RIAM Kyushu Univ. ⁴

タングステン (W) は将来の核融合プラズマ 対向壁材料の有力候補として挙げられている。 しかしWに高温でヘリウム (He) イオンを照射 した結果、表面にHeバブルやフィラメント状の ナノ構造が形成されることが報告されている [1]。また近年の研究で形成されたナノ構造がア ニーリングによって収縮することも明らかと なっている[2]。しかし収縮する際のナノ構造内 部の変化については未だ明らかになっていな い。ナノ構造形成の物理機構を明確にするため にその競合過程である収縮現象を把握するこ とは重要な意味を持つ。そこで本研究では、形 成されたナノ構造の構造変化の温度依存性を 明らかにすると共に、ナノ構造タングステンの 内部に保持されているHeバブルの消失特性を 調査した。

粉末焼結W試料(株式会社ニラコ製)を直径 5 mmで切り出した後、直線型プラズマ照射装置 NAGDIS-II を用いて照射量1.5×10²⁵ m⁻²のHeプ ラズマ照射を行った。また、試料のバイアス電 圧を制御し、入射イオンエネルギー50 eV、表面 温度を1300 Kに維持して実験を行った。Heプラ ズマ照射後、昇温脱離ガス分析装置(TDS)を 用いて脱離するHeガスの温度依存性を調べた。 その際、773 Kから1173 Kまでの温度範囲で100 Kごと昇温し(1 K/s)、各所定の温度で25 分間 保持した。また昇温実験中のHeバブルの状態を 観察するために、透過型電子顕微鏡 (TEM) を 用いて断面観察を行った。具体的には、九大応 力研にてHe照射した試料を集束イオンビーム 装置 (FIB) で厚み50 nmで切り出した後、顕微 鏡内で加熱および観察した。

図1にTDS実験におけるHeの放出結果を示す。 その結果1173 Kで最も大きなHe脱離ピークが 検出された。図2(a)にHeプラズマ照射直後、(b) および(c)にそれぞれ1073 K、1173 Kで加熱した 際の試料の断面TEM像を示す。高温になるにしたがい明らかなナノ構造の収縮が確認された。また、1173 Kではナノ構造内部のバブルの大部分が消失し大きく構造が変化することがわかった。この結果は1173 KにおけるTDS結果と対応しており、この温度で最も表面拡散が活発になり、バブルが表面に移動し大気中へ脱離したと考えられる。

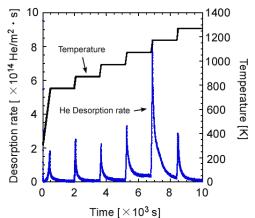


図1) TDS実験におけるHeガス放出結果.

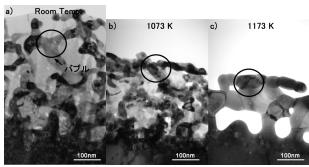


図 2) (a)プラズマ照射直後、(b)1073 K、 (c)1173 K で加熱した試料の断面 TEM 像.

[1]S.Kajita *et al.*, Nucl. Fusion, **49** (2009) 032002. [2]S.Kajita *et al.*, J. Nucl. Mater., **421** (2012) 22-27.