
!'&GKCI4<0>()=5�

%3 �� P
����O��7)�*,+Q

:��;� ��
1GMAKJ

n �/"6


�: 9%3�� �

n �	"6

JAEA: 8���#� �

NIFS: 8.�# �

QST: 8��� �

n 2�"6P��Q

)*, ��
n 2�"6P$�Q

Princeton Univ. P-�Q, ORNL P-�Q, CEA PFKNBQ, 
DIFFER P?KNDQ, IST PHLE@LQ

1

����������:��

-���	�����-���2
���
���
)�/��(���.2
���-�10



)JUfC'w>=

2

JT-60 [JAEA] (1985-2008)

ITER (2025-)

n ,F�lovmxf�7
n �Vf&M=JUgf��d(+Q�
n ,F�1�:�e�[a,42ptnr58f 0

n 	�3,F�

n /B���yO/BDw�O/BTzf
�,jF�\
`b<9_ilovmxj�:

n #��W{JT-60y$Y1985-2008zYJETy.Y1982-z
n O/Bptnrf-"�WcE;*�jN�

n �R3,F��W1ITERy$@.S�T�Y2025-z
n �V�f,42ptnr6�j�7]Y,F�1f?
�=w��=�D�j�I

=> ,42ptnrP^Kh58fH%ZOG

JET [EU] (1982-)

,F�

O/B

�O/B

XLquksyaA�z

���

ptnr
3

lovmx�!



"KXk75�&F

3

LHD [NIFS]
(H:-2016,D:2017-)

JT-60SA [QST] (2020-)

α@�Y�MHD

�����*

n T,KX\}�KXDgkbtlgk	rAm
n I>G(�/1�{��k��j�aev���B��

n ����{�������w��z�u
n��� �

n LHD, JT-60U�Zu�Lhce�J9;jqs|��%J
n M�G(~����~��keok�6�EV4

=> $D�9;j`asxz}�{��I>�6'?

n "KXk75�

]��^g�of
BiM�G(I>�H#u�0

�)��8<W�gk�{��W8��3uhpi_�*�'
R����h@�8��3hOQ0LkH!

n $.-����k����{���*OQ

n $.-����kC4�NhS+�=

n $.-2�[x��y�@�kUdPo

n $D��G(~����~��hAI/���:�kD�
=> $.-����9;j`as���z���



��3�(IKD"GT5D[Idomura,NF2009]
eg�mj���(`7�
0E9_bcO]Ja
!P'��`F�XR��+�` ��U
�#.,z}n{`>2�H^N)�8D"

=> Y��Z 100�v�t!P/j�m�R��D"�

o�kqsdz~`$B

4

#?�z}n{`W&	7�
0E9 ��3�(IKD"GKV[Watanabe,NF2006]
eg��Q�mj���(`7�
0E9_bc��
+�_[\c�(IK� `;<3F�
�#.,z}n{`{�pmj���(D"

=> Y��Z 85�v�t!P/j�m

α:�T�MHDD"MEGA[Todo,POP1998]
α:�T�MHD/G`:��(�wey~qtE9_
bcα:�IK`F�
�#.,1�Vfu�h�:�`O]JaD"

=> Y��Z 150�v�t!P/j�m �ITERz}n{�

eg�;�(`A=lenmj�~�i`D"� Vfu�h�:�T�MHD/G`D"�

JT-60 LHD

���U_[\c�(IK`D"�

Te ¼ 4 keV, and bulk plasma beta value at the magnetic
axis equal to 7:2" 10#4. The neutral beam injection en-
ergy is ENBI ¼ 170 keV. Since the kinetic GAM frequency
at LHD is close to those in tokamaks [3], a tokamak type
equilibrium is examined with concentric magnetic surf-
aces, and with the safety factor profile and the aspect
ratio similar to the LHD plasma. The safety factor q profile
is a weak shear profile with q ¼ 2:0 at the magnetic axis
and q ¼ 0:83 at the plasma edge. The major radius of
the magnetic axis is R0 ¼ 3:9 m and the plasma minor
radius is a¼ 0:65 m. Cylindrical coordinates (R, !, z) are
employed for the simulation with numbers of grid points
(128, 16, 128), respectively, although the equilibrium and
the fluctuations do not depend on !. The number of the
computational particles is 2 million.

The equilibrium energetic particle distribution function
f0 can be written using constants of motion as

f0 ¼ f0ðE;"; P!;#Þ; (1)

P! ¼ Zhec þ Rmvkb!; (2)

where E is the particle energy, " is the magnetic moment,
P! is the toroidal canonical momentum, # distinguishes
the orbit types (with # ¼ 1 for copassing particles, # ¼ 0
for trapped particles, and # ¼ #1 for counterpassing par-
ticles). Zhe andm are the particle charge and mass, c is the
poloidal magnetic flux, vk is the parallel velocity, and b! is
the toroidal component of the magnetic field unit vector.

Assuming the separation of variables, Eq. (1) is exp-
ressed by

f0 ¼ f0ðE;"; P!;#Þ ¼ GðEÞH ð!ÞIðE;"; P!;#Þ; (3)

where ! ¼ "B0=E is the pitch angle variable with the B0

magnetic field strength at the magnetic axis. The energy
distribution GðEÞ is a slowing down distribution. The
function H ð!Þ is introduced to model anisotropic distri-
butions in pitch angle H ð!Þ¼exp½#ð!#!peakÞ2="!2(,
where the !peak represents the pitch angle for the distribu-
tion peak and "! is a parameter to control the distribution
width. In the present simulation,!peak¼0:3 and "!¼0:2.
The function I represents the radial profile which is
consistent with the energetic particle beta profile

IðE;"; P!;#Þ ¼ expð#c nrm=$
2Þ; (4)

c nrm ¼ 1# P! # #R0mv0

Zhec max
; (5)

where v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE#"BminÞ=m

p
, c max is the maximum

value of c , and $ ¼ 0:5 in the present simulation.
The time derivative of %f ¼ f# f0 at each marker

particle is given by

d

dt
%f ¼ d

dt
ðf# f0Þ ¼ #dE

dt

@f0
@E

# dP!

dt

@f0
@P!

: (6)

The destabilization of the EGAM arises from the energy
derivative of f0 with the most important contribution from
the second term of the equation below.

@f0
@E

¼ @G
@E

HI þG
@!

@E

@H
@!

I þ GH
@I
@E

: (7)

The initial energetic particle distribution function in
velocity space is shown in Fig. 1(a). The dashed curves
represent constant ", and particles evolve only along the
dashed curves because " is an adiabatic invariant. In area
A, @f

@E j"¼const > 0, and the particles with positive @f
@E can

destabilize the EGAM. In area B, @f
@E j"¼const < 0, and

particles in this area stabilize the EGAM. Figure 1(b)
shows the energy transfer rate from the EGAM to energetic
particles in (!, E) space in the linear phase. The purple
color represents negative energy transfer, which means the
energy transfer from particles to the EGAM, destabilizing
the mode. In contrast, the red color represents positive
energy transfer that stabilizes the mode. The energy
transfer rate in the destabilizing region is higher than that
in the stabilizing region. Then, the EGAM is excited on the
whole. Notice that the purple region in Fig. 1(b) is located
in area A in Fig. 1(a), and the red region in Fig. 1(b) is
located in area B in Fig. 1(a). These two figures are con-
sistent with each other, clarifying the mode destabilization
mechanism.
The EGAM frequency chirping takes place in the non-

linear phase, and the evolution of the frequency spectrum
and the poloidal velocity is shown in Fig. 2. The mode
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FIG. 1 (color). Panel (a) shows the normalized initial energetic
particle distribution in (!, E) space, and panel (b) shows the
energy transfer rate from the EGAM to energetic particles.
Dashed curves represent constant ".
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(shown below) are also presented. We see more decorrelated
structures in the radial direction with lower fluctuation
amplitudes for both the helical and tokamak D plasmas with
relatively stronger zonal-flow generation.
It should be stressed that since the collisional stabiliza-

tion of the TEM shown in the present analyses is not
particular for helical plasmas, the similar isotope effects on
the turbulent transport and zonal flows are expected in
tokamak plasmas as well. For verifying this, the nonlinear
simulations for CBC-like tokamak plasmas are performed,
where the equilibrium profile parameters of fRax=LTi

¼
8; Rax=LTe

¼ 8; Rax=Ln ¼ 3; Te=Ti ¼ 1g and fRax=LTi
¼

1; Rax=LTe
¼ 8; Rax=Ln ¼ 3; Te=Ti ¼ 3g are used for the

ITG- and the TEM-dominated cases, respectively. The so-
called s–α toroidal geometry, with qðρ0Þ ¼ 1.42, ŝðρ0Þ ¼
0.8 and aρ0=Rax ¼ 0.18, is considered. The GKV simu-
lation results are summarized in Figs. 4(a) and 4(b), which
are similar to those in Fig. 1. As is discussed in the above
LHD case, the similar collisionality dependence is found
for the linear tokamak ITG cases [labeled by L-ITG in
Fig. 4(a)] with the gyro-Bohmmass dependence and for the
linear tokamak TEM cases [labeled by L-TEM in Fig. 4(b)]
with the opposite dependence on the isotope ion mass
around ν$ei ¼ 0.025. It is also revealed that the ν$ii depend-
ence of turbulent heat flux in the nonlinear ITG cases
(labeled by NL-ITG) is qualitatively similar to that in the
linear cases with the

ffiffiffiffiffi
Ai

p
dependence, whereWZF=Wtotal ∼

0.2 for all of the ITG cases. In contrast, as ν$ei increases, the

nonlinear TEM results (labeled by NL-TEM) show
steeper decrease of the transport level in comparison to
the linear cases, where ½

P
sqs forD&=½

P
sqs forH& ¼ 0.43

in the nonlinear TEM case for ν$ei ¼ 0.035, indicating more
significant reduction than that in the linear estimation with
the ratio of 0.63.
The transport reduction beyond the linear TEM stabili-

zation is also attributed to the nonlinear turbulence sup-
pression by the zonal flows as the TEM growth rate
decreases towards the marginal stability with increasing
ν$ei, as is similar to those in the near-marginal collisionless
(or weakly collisional) ITG turbulence [37,38]. Indeed,
Figs. 5(a) and 5(b) show the radial profiles of the long-time

FIG. 3. Spatial structures of the potential fluctuations in the
TEM-driven turbulence for (a) LHD H, (b) LHD D, (c) CBC-like
tokamak H, and (d) CBC-like tokamak D plasmas, where the
simulation conditions of LHD and CBC tokamak cases corre-
spond to those in Figs. 2 and 4(b) (ν$ei ¼ 0.035), respectively.
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tive comparison of profiles. NL-TEM cases without the zonal
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the ratio of the electron-ion collision frequency to the ion
transit frequency, i.e., νei=ωti ∝ ðmi=meÞ1=2 ∝

ffiffiffiffiffi
Ai

p
, leads

to stronger collisional stabilization for heavier isotope ions.
Note also that the stabilization effect on ITG modes by the
ion-ion collisions is almost independent of the ion mass,
i.e., νii=ωti ∝ m0

i . Then, the opposite ion mass dependence
of Aα

i with α < 0 appears for the TEM in a certain
collisionality regime, i.e., ν#ei ≥ 0.04 in the present case.
The reduction in the mixing-length diffusivity for the
TEM through the collisional effects provides us with a
useful qualitative basis to investigate the isotope impacts
on the turbulent transport. For the comparison, which will
be shown below, the nonlinear TEM results (labeled by
NL-TEM) are also plotted in Fig. 1.
As for the linear zonal-flow response, earlier theoretical

works show the weak isotope effects; i.e., the zonal-flow
response kernel indicates no explicit mass dependence
for the fixed k⊥ρti [35], except for the cases with the
equilibrium radial electric field [13–15]. Therefore, the
isotope mass impacts on the nonlinear zonal-flow dynamics
become more important.
Following the above linear analyses, we have per-

formed massively parallel nonlinear TEM-driven turbu-
lence simulations for the non-axisymmetric LHD plasma,
where ∼200 hours with 69,120 computation cores are
required for a hydrogen case. The equilibrium parameter
set for the TEM shown above is used, and ν#ei ¼ 0.07 is
considered. We employ a number of grid points in
(x; y; z; v∥; μ) as (256 × 96 × 320 × 90 × 24) for the ion
and electron, where sufficiently large box sizes of
Lx ¼ 147.3ρtH (or kxðminÞρtH¼0.04265) and Ly¼148.1ρtH
(or kyðminÞρtH ¼ 0.04243) are taken for the comparison
between H and D plasmas.
Nonlinear GKV simulation results on the time evolution

of the turbulent radial heat flux
P

s¼i;eqs, the turbulence
energy Wturb:, and the zonal-flow energy WZF are shown in
Figs. 2(a) and 2(b), where Wturb. and WZF are defined as
the nonzonal (ky ≠ 0) and the zonal (ky ¼ 0) components
of Wtotal ¼ h

P
kx;kyðe

2
sns=2TsÞ½1 − Γ0ðk2⊥ρ2tsÞ&jδϕk⊥ j

2iz≃
h
P

kx;kyðniTi=2Þk2⊥ρ2tiðe2jδϕk⊥ j
2=T2

i Þiz, with the field-
line-averaging operator h' ' 'iz. Also, the time evolution
of the normalized entropy transfer from turbulence to zonal
modes,

P
s¼i;eTsT

ðZFÞ
s =

P
s¼i;eqsL

−1
Ts
, is shown in Fig. 2(c),

where T ðZFÞ
s is regarded as a kinetic extension of the zonal-

flow energy production due to the Reynolds stress (see
Ref. [36] for the definitions) and should balance with the
collisional dissipation for the zonal modes DðZFÞ

s in the
statistically steady turbulence state. Actually, the time

averaged entropy balance relation of
P

s¼i;eTsT
ðZFÞ
s þ

P
s¼i;eTsD

ðZFÞ
s ¼ 0 (the overline means the time average)

is accurately satisfied within a relative error of less than
10% in the present TEM turbulence simulations. As shown

in Fig. 2(a) and also by symbols in Fig. 1, the turbulent
transport level in the D plasma is lower than that in the
H plasma, where the ratio of the mean turbulent transport
level is evaluated as ½

P
sqs for D&=½

P
sqs for H& ¼ 0.48,

which exhibits more significant reduction than that in
the linear estimation with the ratio of 0.66. One also finds
that the zonal-flow energyWZF increases in the D plasma in
spite of the slight decrease of the turbulence energy Wturb:,
where the zonal-flow enhancement characterized by the
increase of the mean relative amplitude [14,34],WZF=Wtotal
from 0.25 in H plasma to 0.39 in D plasma, is well
correlated with the normalized entropy transfer shown in
Fig. 2(c). The effective zonal-flow shearing rate defined
by ωZF=γmax in the D plasma is more than twice as large as
that in the H plasma, where ωZF ¼ hj∂xvZFjix means the
shearing rate of the steady zonal flows, and h' ' 'ix denotes
the spatial average in the radial (x) direction. As will be
shown below, the increase of the zonal-flow impact at the
near-marginal stability in the D plasma is induced by the
stronger collisional stabilization of the TEM for heavier
isotope ions.
Three dimensional spatial structures of the potential

fluctuations are shown in Figs. 3(a)–3(d), where hydrogen
and deuterium cases are displayed. For comparison, the
results of Cyclone base case (CBC)-like tokamak TEMcases
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P
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Ts
), where s ¼ fi; eg, and ν#ei ¼ 0.07.

PRL 118, 165002 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

21 APRIL 2017

165002-3

the ratio of the electron-ion collision frequency to the ion
transit frequency, i.e., νei=ωti ∝ ðmi=meÞ1=2 ∝
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p
, leads

to stronger collisional stabilization for heavier isotope ions.
Note also that the stabilization effect on ITG modes by the
ion-ion collisions is almost independent of the ion mass,
i.e., νii=ωti ∝ m0

i . Then, the opposite ion mass dependence
of Aα

i with α < 0 appears for the TEM in a certain
collisionality regime, i.e., ν#ei ≥ 0.04 in the present case.
The reduction in the mixing-length diffusivity for the
TEM through the collisional effects provides us with a
useful qualitative basis to investigate the isotope impacts
on the turbulent transport. For the comparison, which will
be shown below, the nonlinear TEM results (labeled by
NL-TEM) are also plotted in Fig. 1.
As for the linear zonal-flow response, earlier theoretical

works show the weak isotope effects; i.e., the zonal-flow
response kernel indicates no explicit mass dependence
for the fixed k⊥ρti [35], except for the cases with the
equilibrium radial electric field [13–15]. Therefore, the
isotope mass impacts on the nonlinear zonal-flow dynamics
become more important.
Following the above linear analyses, we have per-

formed massively parallel nonlinear TEM-driven turbu-
lence simulations for the non-axisymmetric LHD plasma,
where ∼200 hours with 69,120 computation cores are
required for a hydrogen case. The equilibrium parameter
set for the TEM shown above is used, and ν#ei ¼ 0.07 is
considered. We employ a number of grid points in
(x; y; z; v∥; μ) as (256 × 96 × 320 × 90 × 24) for the ion
and electron, where sufficiently large box sizes of
Lx ¼ 147.3ρtH (or kxðminÞρtH¼0.04265) and Ly¼148.1ρtH
(or kyðminÞρtH ¼ 0.04243) are taken for the comparison
between H and D plasmas.
Nonlinear GKV simulation results on the time evolution

of the turbulent radial heat flux
P

s¼i;eqs, the turbulence
energy Wturb:, and the zonal-flow energy WZF are shown in
Figs. 2(a) and 2(b), where Wturb. and WZF are defined as
the nonzonal (ky ≠ 0) and the zonal (ky ¼ 0) components
of Wtotal ¼ h
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of the normalized entropy transfer from turbulence to zonal
modes,
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s =
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, is shown in Fig. 2(c),

where T ðZFÞ
s is regarded as a kinetic extension of the zonal-

flow energy production due to the Reynolds stress (see
Ref. [36] for the definitions) and should balance with the
collisional dissipation for the zonal modes DðZFÞ

s in the
statistically steady turbulence state. Actually, the time

averaged entropy balance relation of
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ðZFÞ
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P
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s ¼ 0 (the overline means the time average)

is accurately satisfied within a relative error of less than
10% in the present TEM turbulence simulations. As shown

in Fig. 2(a) and also by symbols in Fig. 1, the turbulent
transport level in the D plasma is lower than that in the
H plasma, where the ratio of the mean turbulent transport
level is evaluated as ½

P
sqs for D&=½

P
sqs for H& ¼ 0.48,

which exhibits more significant reduction than that in
the linear estimation with the ratio of 0.66. One also finds
that the zonal-flow energyWZF increases in the D plasma in
spite of the slight decrease of the turbulence energy Wturb:,
where the zonal-flow enhancement characterized by the
increase of the mean relative amplitude [14,34],WZF=Wtotal
from 0.25 in H plasma to 0.39 in D plasma, is well
correlated with the normalized entropy transfer shown in
Fig. 2(c). The effective zonal-flow shearing rate defined
by ωZF=γmax in the D plasma is more than twice as large as
that in the H plasma, where ωZF ¼ hj∂xvZFjix means the
shearing rate of the steady zonal flows, and h' ' 'ix denotes
the spatial average in the radial (x) direction. As will be
shown below, the increase of the zonal-flow impact at the
near-marginal stability in the D plasma is induced by the
stronger collisional stabilization of the TEM for heavier
isotope ions.
Three dimensional spatial structures of the potential

fluctuations are shown in Figs. 3(a)–3(d), where hydrogen
and deuterium cases are displayed. For comparison, the
results of Cyclone base case (CBC)-like tokamak TEMcases
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n Zu��w�=�X�gmo��{�h��:(�q�6 [Wang+, PRL 2018; NF2019]

n JT-60Ug]_oQ,ShMHD��z~q�6 [Bierwage+, Nature Comm. 2018]
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FIG. 3: Comparison between ALEs in simulations (top) and experiments (bottom). In
panels (c) and (d), the time traces are shown for the amplitudes of individual toroidal
harmonics n = 1, 2 and 3.

where the subscript “h” denotes fast (“hot”) ions. In the following subsections, some of
the most important results are described and discussed.

3.1 Period and amplitude of magnetic fluctuations

The multi-phase simulation results in Fig. 3(a) show three ALEs separated by quiet
periods of about 50± 10 ms duration. During each ALE, the magnetic fluctuations reach
amplitudes that lie one order of magnitude above the level of the relatively quiet periods.
These results agree well with experimental observations, as the example in Fig. 3(b) shows.

Physically, the length of the periods between ALEs appears to be relatively insensitive
to the exact time history of low-amplitude MHD activity, such as rapidly chirping energetic
particle modes [11] with dominant toroidal mode number n = 1 that are observed during
the relatively quiet intervals [9]. Instead, recent resonance analyses [5, 12, 13] indicate
that the ALE periods are mainly determined by the time scale for collisional slow-down,
during which resonances driving modes with n > 1 are refilled with fast ions.

3.2 Multi-wavelength character and trigger mechanism

The multi-phase simulation result in Fig. 3(a) tells us with an accuracy of about 10 ms
where to look for an ALE with the self-consistent simulation. In order to simulate ALE
#2 at 130 ms self-consistently, we initialized MEGA with a snapshot of the fast ion
distribution taken at 118 ms of the multi-phase simulation. Our expectation was to find
an ALE in the time window 130± 10 ms of the self-consistent simulation.

Indeed, Fig. 3(c) shows that an ALE occurred at 123.5 ms of the self-consistent sim-
ulation. This is highly remarkable if one notes that the simulation started from a stable
initial condition. The system remained quiet for a relatively long interval of 5.5 ms, before
it made an abrupt transition to a distant new equilibrium by self-consistently triggering
an ALE and along with the associated fast ion avalanche.

JT-60Ug]_o��z~:MHD6Hh��|,Szx��D-Zu��w�=�gmo��:(�6H
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