Neutral Density Profile Determines the Vorticity of Ion Flow in a Charge Exchange-dominated Plasma

OKAMOTO Atsushi, HARA Kazuhisa, NAGAOKA Kenichi1), YOSHIMURA Shinji1), VRANJES Jovo2), KONO Mitsuo3), and TANAKA Masayoshi Y. 1)

Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
1)National Institute for Fusion Science, Toki 509-5292, Japan
2)Institute of Physics, P.O. Box 57, Yu-11001 Belgrade, Yugoslavia
3)Faculty of Policy Studies, Chuo University, Tokyo 192-0393, Japan
(Received 20 September 2002 / Accepted 17 October 2002)

A net momentum exchange during the charge exchange process produces an effective force acting on ions, which may dominate the ambipolar electric field to drive the ions into the anti-\(\mathbf{E} \times \mathbf{B}\) vortical motion. In this circumstance, the logarithm of the neutral density profile determines the vorticity distribution of the ion flow field.

Keywords: vorticity, neutral density, stream function, charge exchange process, tripolar vortex

Recently, vortex formation has been attracting much attention in regard to structure formation [1,2], transport phenomena, and turbulent flow in plasmas, and accordingly there is an increasing demand for a way to measure the vorticity experimentally.

The perpendicular flow velocity of a plasma with an external magnetic field is usually given by the \(\mathbf{E} \times \mathbf{B}\) drift and the diamagnetic drift. The vorticity is then determined by \(\nabla \times \phi\) and \(\nabla \log n\) (\(\phi\) the potential, \(n\) the density of plasma). In particular in pure electron plasmas [3], the perpendicular velocity is determined only by the \(\mathbf{E} \times \mathbf{B}\) drift, and hence the vorticity distribution turns out to be identical to the electron density distribution with the aid of the Poisson equation. This is a great advantage from an experimental point of view, because the vorticity distribution can be obtained without measuring the flow velocity field. In ordinary plasmas, however, the vorticity should be determined by measuring both the potential and density profiles or by directly measuring the flow velocity vectors in order to utilize \(\nabla \times \mathbf{v}\). In this paper, we report an experimental example in which the vorticity distribution of the ion flow field can be obtained from the neutral density profile.

As shown in Fig. 1(a), we have observed that a tripolar vortex occurs in an argon plasma, and more interestingly the ion flow direction is opposite to that of the \(\mathbf{E} \times \mathbf{B}\) drift. Figure 1(b) depicts the observed azimuthal velocity profile (solid circles) and the \(\mathbf{E} \times \mathbf{B}\) drift velocity profile (open circles) along the horizontal chord (\(y = 0\)). This result indicates the existence of a force acting on the ions other than the radial electric force. To explain the mechanism of anti-\(\mathbf{E} \times \mathbf{B}\) vortical motion, we consider the equation of motion for ions under charge-exchange dominant conditions [4]. A net momentum transfer during the charge exchange process may produce an effective force acting on the ions. The perpendicular flow velocity for ions is then given by

\[
v_{\perp} = \frac{1}{\omega_{\text{ce}} + \nu_{\text{e}}^2} \left[e \left(\frac{\omega_{\text{ce}} \mathbf{e} \times \nabla \phi - v_{\text{e}} \nabla \phi}{M} + \nabla \times \mathbf{v}_{\text{e}} \right) \log n_i - v_{\text{e}} \nabla \log n_i \right] + \omega_{\text{ce}} \nu_{\text{e}} D_{\text{ce}} \mathbf{e} \times \nabla \log n_i \] \]

where \(v_{\text{e}}\) is the charge exchange collision frequency, and \(D_{\text{ce}}\) is the effective diffusion coefficient. The term \(\omega_{\text{ce}} \nu_{\text{e}} D_{\text{ce}} \mathbf{e} \times \nabla \log n_i\) represents the \(\mathbf{F} \times \mathbf{B}\) drift motion due to the effective force, which is defined as the momentum input rate during the charge exchange process per unit volume, i.e.,
\[\nu.M nD_{n}\nabla.\log n_r. \]

Taking the curl of the above equation, we have the z-component of vorticity:

\[\omega_z = \frac{\partial z}{\partial t} \left[\nabla^2 \left(\frac{C}{M} \phi + n_{i} + v_n D_{n \text{eff}} \log n_r \right) \right], \tag{2} \]

where we assumed the weak functional dependence of \(1/(\omega_z^2 + v_n^2)\) on \(r\). Here the ratio of the first term to the third in the right is estimated to be \(\leq 10^{-1}\) and the second term to the third \(\leq 10^{-2}\) using our experimental conditions (\(p \leq 3 \times 10^{-2} \text{Torr}, n \leq 10^3 \text{cm}^{-3}, T_e = 3 \text{eV}, T_e/T_i \leq 20, B = 1 \text{kG}, D_{\text{eff}} = 5 \text{D}_{\text{eff,ideal}}\)). Thus the effective force due to neutral particles may overcome the electric field and pressure. The vorticity is then determined only by the neutral density profile to give

\[\omega_z \propto \nabla^2 \log n_r. \tag{3} \]

In this case, the quantity \(\log[n_r(r)]\) becomes the stream function of the ion flow field.

We have measured the flow velocity components and the neutral density profile, and compared the z-component of \(\nabla \times \nu\) with \(\nabla^2 \log n_r(r)\) for the plasma, in which the anti-\(E \times B\) tripoar vortex is formed [5]. Figure 2(a) shows the z-component of vorticity distribution determined based on the flow velocity field [6]. In the figure, the positive vorticity is localized in the central region, while the negative ones are located in both sides of the center vortex, forming a tripoar structure having three aligned vortices with alternate signs of polarity of rotation. We emphasize that the rotation directions of these vortices are completely opposite to that of the \(E \times B\) drift determined based on potential measurement.

Figure 2(b) shows the contour map of \(\nabla^2 \log n_r(r)\). The neutral density profile \(n_r(r)\) was determined by the ratio of the Ar I (425.9 nm) intensity to the square root of Ar II (488.0 nm) intensity. Although the line emission intensity of the present experiment is an integrated quantity whose line of sight is parallel to the plasma axis, this method is justified as far as the plasma is uniform along the axis, which has been experimentally confirmed. The second-order derivative of neutral density profile \(\nabla^2 \log n_r(r)\) was obtained by using the Fast Fourier Transform, in which the short wavelength modes (noises) were removed. The contour map shown in Fig. 2(b) also exhibits a tripoar structure fairly similar to that shown in Fig. 2(a), which means that the effective force due to neutrals \(\nu_{\text{eff}}D_{n} \nabla^2 \log n_r\) in fact dominates the radial electric field.

The importance of our experimental results lies in the fact that the effective force generated by the neutral density profile may overcome the ambipolar electric field in a charge exchange-dominated plasma. In such a circumstance, the logarithm of the neutral density profile acts as the stream function, which makes it possible to obtain the vorticity distribution without laborious measurements of the flow velocity field.