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We have been conducted high-rep. inertial fusion experiments on the basis of counter-irradiating direct heating scheme. 
We report the present status of experiments that tailored pulses with 2.5 J/25 ns foot and 0.5 J/0.3 ns peak implode a 
spherical shell target of 500 µm in diameter and 7 µm in thickness and sequence pulses with 0.4 J/150 fs direct heat this 
imploded core. In the series of shot, we have succeeded in energy deposition into the imploded core center. 
 
1. Introduction 
 The burning of inertial confinement fusion (ICF) 
is achieved in National Ignition Facility (NIF) in 
2014 [1]. To realize inertial fusion energy (IFE), we 
required an improvement of the energy coupling 
efficiency from laser to fuel core plasma, which 
was limited to 0.8 % in the NIF experiments. 
Present NIF experiments have been adopted 
so-called indirect scheme [2] to produce a central 

hot spot. In contrast, direct scheme with advanced 
ignition such as fast ignition [3-6] is considered 
attractive for IFE because we can expect higher 
coupling efficiency with lower laser energy.  
 We are involved in counter irradiating direct 
heating scheme [7], in which tailed pulses implode 
a spherical shell target to compose core plasma at 
first then heating pulses in sequence direct heat this 
core. This paper represents the present status of 
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direct heating experiments those including the 
evidence of energy deposition of heating pulses into 
the imploded core in series shots. 
   
2. Experimental Results 
 Figure 1 represents the laser block-diagram of 
HAMA [8] and the schematics of laser irradiation 
on the spherical shell target. Each counter beam 
includes three pulses in sequence; “K: 2.4 J/25 
ns”, ”L: 0.5 J/300 ps”, and “S: 0.4 J/150 fs”, 
respectively. The peak laser intensitie was 2 x 1013 
W/cm2 for “L” and 6 x 1018 W/cm2 for “S”, 
respectively. The shell target is consists of 
deuterated polystyrene with 500 µm in diameter and 
7 µm in thickness. This target has two apertures of 
φ 400 µm in perpendicular to the laser axis for 
making diagnoses of photon emission from a 
plasma core by using a X-ray streak camera.  

 
Fig.1. [a] The laser block-diagram of HAMA and [b] 
laser-target irradiation schematics for counter-irradiating 
fast heating scheme.  
 
 Figure 2 shows X-ray streak images (a) w/o 
heating and (b) w/ heating pulses. X-ray emission 
profiles both in time and in space are shown in (c) 
and (d), respectively. From Fig.2 (a), the broad 
emission at central region indicates the formation of 
imploded core by irradiation of “K” and “L” pulses. 
From Fig.2 (b) and (d), by irradiating heating pulses 
in addition, the intensity of X-ray emission was 
increased at the spatial region of 50 µm in center. 
These figures indicate that we can deposit energy of 
heating pulses into the imploded core central rather 
than core edge where heating lasers were irradiated.  
 Figure 3 shows X-ray streak images for several 
shots in series. Shot#44 was w/o heating pulses and 
the other were w/ heating pulses. From Fig.3, we 
observed central core heating for every shot when 
heating pulses were irradiated. These results 
indicate that the direct heating scheme is a 
promising candidate for improvement of energy 

coupling efficiency into the plasma core. 

 
Fig.2. X-ray streak images for (a) w/o heating and (b) w/ 
heating. (c) X-ray emission profiled in time regions for 
w/ and w/o heating. (d) X-ray emission profile in space 
regions for w/ and w/o heating.  
 

 
Fig.3. X-ray streak images for several shots in series 
(#44 ~ #51). Shot #44 is w/o heating and the others are 
w/ heating 
 
3. Conclusions  
 Tailored pulses with 25 ns foot and 0.3 ns peak 
implode a spherical shell target of 500 mm in 
diameter and 7 mm in thickness and sequence 
pulses with 150 fs duration direct heat this 
imploded core. We have succeeded in energy 
deposition into the imploded core center for every 
shots in repetitive experiments. 
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