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Trapped fast ion motion in magnetic confinement devices is investigated theoretically and numerically. 
Using a particle simulation code based on the drift model, precession drifts of trapped fast ions in a helical 
system are simulated, where the precession drift orbit shows a circular, helical shape around a magnetic 
axis. Poloidal precession drifts of the trapped fast ions are in the direction of the ion diamagnetic drift. 
Simulation results of the precession drift directions are benchmarked with an analytic theory. 

 
 
1. Introduction 
 In the magnetic confinement fusion devices, 
such as tokamaks and helical systems, fast (or 
energetic) ions are produced by external heating 
and/or thermonuclear fusion. To maintain high 
temperature plasmas, fast ions must efficiently 
heat background plasmas. However, fast ion 
losses can become anomalously large, when 
fast-ion-driven magnetohydrodynamic (MHD) 
instabilities are excited. Concerning passing fast 
ions, the fast-ion-driven Alfven eigenmodes are 
well known [1]. The fishbone mode in tokamaks 
is known to be driven by trapped fast ions [2]. In 
tokamaks, the resistive wall mode driven fast ions 
has been observed [3,4]. In helical systems, the 
fishbone-like mode has been observed [5], 
although a physical mechanism is not clarified yet. 
In order to study wave-particle interaction among 
fast ions and MHD waves, it is necessary to 
understand fundamental behavior of a single fast 
ion. In this study, we focus on trapped fast ions in 
helical systems. 

 
2. Simulation Model 
 We introduce a so-called drift model [6,7], where 
gyro-motion of particle is averaged so that the 
model only involves guiding center velocities of the 
particles. In the drift model, the guiding center 
velocity is given by 
 
            vgc = v//b+ vE + vm ,          (1) 

 
with 
 
       m dv// dt( ) = b ⋅ eE−µ∇B( ) ,       (2) 

 

where v//  is the velocity parallel to the magnetic 
field, b  is the unit vector of the magnetic field, 
vE  is the ExB drift velocity, and vm  is the 
magnetic drift including the ∇B  and inertia drifts, 
m  is the ion mass, e  is the ion charge, µ  is the 
magnetic moment, and E  is the electric field. The 
drift model gives good approximations of particle 
motion as long as µ  is well conserved along 
particle orbits. In addition, in the low β  limit, Eqs. 
(1) and (2) can be derived from more sophisticated 
model [7], which ensures the conservation of µ . 
 A simulation code, which solves the model in 
three-dimensional Cartesian coordinate, is 
developed. A time evolution of the particle motion 
is solved by the fourth-order Runge-Kutta method, 
and the Lagrange interpolation is used to specify 
the field data at the particle position from 
discretized field data. The particle motion in mirror 
devices and tokamaks by the drift model is 
benchmarked with that by an exact Newton 
equation. 
 
3. Simulation Result 
 The helical system is characterized by twisting 
magnetic fields by external coils, where a dominant 
component of the magnetic field B  is given by 
those in currentless and vacuum limits. Relations 
∇⋅B = 0  and ∇×B = 0  give B =∇Φ  and 
∇2Φ = 0 , where Φ  is the magnetic scalar 
potential. In the large aspect ratio limit of torus, the 
equation for Φ  is reduced to that in cylindrical 
coordinates r,θ, z( ) , where r  is the minor radial 

position, θ  is the poloidal angle, and z  is the 
toroidal position. Assuming that the helical systems 
have the pole number l  and the pitch number M , 
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we consider that Φ  has a form 
 
   Φ = − B0R0 M( )εh sin lθ −Mz R0( ) ,    (3) 

 
where B0  is the magnetic field amplitude at the 
magnetic axis, R0  is the major radius, εh  is the 
relative magnitude of the helical component of the 
magnetic field. Components of the magnetic field in 
the cylindrical coordinates are given 
by Br = dΦ dr , Bθ = (1 r)(∂Φ ∂θ ) , Bz = B0
+(∂Φ ∂z) , respectively. 
 In the following, typical parameters in the LHD 
are considered: εh = 0.45 r a( )2 , B0 = 2.0[T ] , 

R0 = 3.6[m] , a = 0.7[m] , l = 2 , and M =10 . 
In these parameters, we have ι = 0.6  at the center, 
and ι =1.8  at the last closed surface, where, ι  is 
the rotational transform normalized by 2π . 
 
    

  
	  

Fig.1. Isosurface plot of the magnetic flux surface 
 

 Figure 1 shows the typical magnetic flux surface, 
where two toroidal ripples are plotted. In 
simulations of trapped fast ion motion using Eqs. 
(1)-(3), we consider the following initial conditions: 
ρi =1.0[cm] , v// v⊥ = 0.1 , where ρi  is the 

Larmor radius, v⊥  is the perpendicular velocity.  
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Fig.2. Poloidal projection of trapped fast ion motion 
 

 Figure 2 shows the poloidal projection of trapped 
fast ion motion. The fast ions are trapped by the 
rippled toroidal magnetic fields, where the toroial 
magnetic field is in the positive direction z  is 
Cartesian coordinates. During the bounce motion, 
centers of trapped fast ions drift in both the poloidal 
and toroidal directions, which are called precession 
drifts. The precession drift is due to the magnetic 
drift approximated by  
 
          vm = cµ eB( )b×∇B ,          (4) 

 
for trapped fast ions. Equations (1) and (3) show	 
that the trapped fast ions are located around 
lθ −Mz R0 = π + 2kπ  for arbitrary integer k . 
Then, the poloidal precession drift frequency is 
approximated by 
 
          ωθ = − cµ e( ) dεh dr( ) .        (5) 

 
This indicates the poloidal precession drift is in the 
clockwise direction in the x-y plane (ion 
diamagnetic drift direction), which is consistent 
with the result in Fig. 2. The toroidal precession 
drift frequency is given such that ω z = l M( )ωθ . 

 
4. Discussion 
 An evolution of trapped fast ions’ distribution 
function is described by a so-called bounce- 
averaged drift-kinetic equation, which involves the 
precession drift frequency and eliminates the rapid 
bounce motion [8]. Considering the bounce- 
averaged drift-kinetic equation, the fishbone-like 
mode in helical systems could be analyzed. 
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