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Geodesic acoustic modes (GAMs) driven by energetic particles (EPs) have been shown to have several 
branches. Selection of the branch is determined by the transit frequency and the drift frequency of EPs, 
which are functions of the energy of EPs. When the eigenfrequency of the GAM is close to the drift 
frequency of EPs, the poloidal eigenfunction has a sharp peak where the drift velocity has maximum value 
and the resonance between the wave and EPs is strong. The effective wavenumber parallel to the magnetic 
field increases due to the sharp peak, which leads to the increase of ion heating effect by Landau damping. 

 
1. Introduction 

Importance of geodesic acoustic modes 
(GAMs) driven by energetic particles (EPs) [1] 
has been recognized in the study of magnetic 
confined plasmas. A gyrokinetic simulation has 
shown that the GAMs driven by EPs couple with 
turbulence so that it may be possible to control 
turbulent transport by EPs [2]. GAMs transfer 
their energy to bulk ions through dissipation such 
as Landau damping, and the energy channeling 
from EPs to bulk ions via GAMs has been 
proposed as GAM channeling [3]. Actually, 
GAMs driven by EPs have been observed in 
experiments [4, 5], and several branches of 
GAMs have been found [5]. Identification of each 
branch of GAMs driven by EPs is required. 
  In this study, the eigenmode analysis of GAMs 
driven by EPs is performed based on the 
gyrokinetic equation. We show there are several 
branches of GAMs in the presence of EPs. In 
accordance with the energy of EPs, the resonance 
between particles motion and the GAMs changes 
so that a new branch appears. Here, we show 
three GAM branches; one of them is studied for 
the first time. The basic model is described in Sec. 
2. The eigenmodes of each branch are shown in 
Sec. 3. The summary is given in Sec. 4. 

 
2. Model 

The plasma configuration under consideration is 
a high aspect ratio tokamak with a circular cross 
section. The linearized gyrokinetic equation for the 
non-adiabatic response of the ion velocity 

distribution to a GAM oscillation 

€ 

Gω  is governed 
by 

€ 

ω + iω t∂θ −ω d sinθ( )Gω = −ω∂EFeqJ0(k⊥v⊥)φω , (1)
where 

€ 

ω  is the eigenfrequency, 

€ 

ω t  is the transit 
frequency, 

€ 

ω d  is the drift frequency due to 
inhomogeneity of the magnetic field. The 
frequencies are normalized by the typical frequency 
defined as the ion thermal velocity divided by the 
major radius. The equilibrium distribution function 
is denoted by 

€ 

Feq , which consists of bulk 
component (Maxwell distribution) and EPs 
component, 

€ 

J0(k⊥v⊥)  is the zero-th order Bessel 
function, and 

€ 

φω is the GAM potential. Here, 

€ 

k  is 
the radial wavenumber normalized by ion 
gyroradius, 

€ 

θ  is the poloidal angle, and 

€ 

q is the 
safety factor. For the transparency of the analytical 
treatment, the EP distribution is assumed as a beam 
distribution. Charge quasi-neutral condition is given 
as  

€ 

J0Gω = τ +1( )φω −τφ0, (2)  
where 

€ 

...  represents velocity integral, 

€ 

τ  is the 
ratio between ion and electron temperature, and 

€ 

φ0  
is the poloidal averaged GAM potential. GAM 
eigenmodes are determined by Eqs. (1) and (2).  
 
3. GAM branches 

In this section, GAM branches are shown. 
Equation (1) has two kinds of poles in accordance 
with the transit frequency and the drift frequency of 
EPs. Their frequencies are functions of energy of 
EPs, so that each branch appears depending on EPs’ 
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energy. In the limit of 

€ 

ω h >>ωD , the resonance 
between the transit motion of EPs and the GAM is 
realized, and an eigenmode with the frequency 
close to 

€ 

ω h  is predicted to appear. Here, 

€ 

ω h is 
the transit frequency of EPs, and 

€ 

ωD  is the drift 
frequency of EPs. In the limit of 

€ 

ωD >>ω h , the 
resonance between drift motion of EPs and the 
GAM appears, and a branch with 

€ 

ω ~ ωD  appears. 
The characteristics of both branches are explained 
in the following.  

 
1) 

€ 

ω h >>ωD  
  In this limit, the poloidal side band coupling, 
which stems from the third term in LHS of Eq. (1), 
is weak, so that the poloidal eigenfunction is a 
smooth function of 

€ 

θ . A poloidal mode expansion 
is suitable. When the poloidal modes up to 

€ 

±1 are 
considered, the dispersion relation can be derived as 

€ 

1− ωG
2

ω 2 + iΔLandau −Ch
1

ω −ω h( )2
+

1
ω +ω h( )2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= 0, (3)  

where 

€ 

ωG  is the standard GAM frequency defined 
as 

€ 

ωG = 7 /4 +τ −1 , 

€ 

ΔLandau  is the Landau damping 
term, and 

€ 

Ch  is a coefficient that depends on the 
parameter of EPs and is proportional to the density 
of EPs. In the absence of EPs (

€ 

Ch = 0 ), Eq. (3) 
reproduces the standard GAM branch as 

€ 

ω ≈ωG − iωGΔLandau(ωG ) /2 . The branch with 

€ 

ω ≈ω h  is predicted in the presence of EPs. This 
branch becomes unstable when 

€ 

ω h <ωG . The 
detail study of this branch has been analyzed [1, 6]. 
 
2) 

€ 

ωD >>ω h  
  The resonance between the drift motion of EPs 
and the GAM becomes important in this limit, and 
the poloidal side band coupling is strong. The 
poloidal mode expansion cannot be used, so that the 
eigenfunction is treated as a function of the poloidal 
angle as in [7]. The dispersion relation is obtained 
as 

€ 

1− ωG
2

ω 2 + iΔLandau
' −Ch '

ωD

1−ωD
2ω−2( )3 / 2

= 0. (4)  

This dispersion relation also includes the standard 
GAM branch. In the case of 

€ 

ωD <ωG , only the 
standard GAM branch exists. When the drift 
frequency of EPs exceeds the standard GAM 
frequency 

€ 

ωD >ωG , the standard GAM branch and 
a branch with 

€ 

ω ≈ωD , which is the new one, exist. 
The eigenfunction of the new branch is shown in 
Fig. 1. The poloidal eigenfunction has a sharp peak 
where the drift velocity has maximum value 

€ 

θ = π /2 , and the resonance between the wave and 

EPs is strong. The effective wavenumber parallel to 
the magnetic field, which is evaluated from the 
poloidal angle derivative, increases due to the sharp 
peak, and the effect of ion heating through Landau 
damping becomes large.  
 

 
     Fig.1. Poloidal eigenfunction with 

€ 

ω ≈ωD  
 
4. Summary 

GAMs driven by EPs are shown to have several 
branches in this paper. Ordering of the transit 
frequency and the drift frequency of EPs is 
important to determine which branches appear. In 
the limit of 

€ 

ω h >>ωD , the branch with 

€ 

ω ≈ω h  
exists in addition to the standard GAM branch. 
When 

€ 

ωD >>ω h , the new branch with 

€ 

ω ≈ωD  is 
found to exist. Its poloidal eigenfunction has a 
sharp peak where the drift velocity has maximum 
value and the resonance between the wave and EPs 
is strong. The effective wavenumber parallel to the 
magnetic field increases due to the sharp peak, and 
the effect of ion heating through Landau damping 
becomes large. 
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