Evaluation of time evolution of 3-D Structure in Low-Aspect-Ratio RFP RELAX with SXR Imaging Technique

軟X線イメージングを用いた低アスペクト比RFPにおける 三次元構造時間発展の計測

<u>Akio Sanpei</u>¹, Sadao Masamune¹, Go Ishii¹, Ryota Ueba¹, Ryosuke Kodeara¹, Yosuke Aoki¹, Tomoyuki Nagano¹, Masataka Higuchi¹, Kenta Jikuhara¹, Haruhiko Himura¹, Tsuyoshi Akiyama², Satoshi Ohdachi² and Naoki Mizuguchi²

<u>三瓶明希夫</u>¹, 政宗貞男¹, 石井豪¹, 上羽涼太¹, 小寺良典¹, 青木陽祐¹, 長野友幸¹, 樋口真 行¹, 軸原健太¹, 比村治彦¹, 秋山毅志², 大舘暁², 水口直紀²

> I) Kyoto Institute of Technology Goshokaido-cho, Matsugasaki, Sakyo Ward, Kyoto 606-8585, Japan 京都工芸繊維大学 〒606-8585 京都市左京区松ヶ崎御所海道町 2) National Institute for Fusion Science 322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan 核融合科学研究所 〒509-5292 岐阜県土岐市下石町322-6

In a low-A RFP machine RELAX (R = 0.51 m/a = 0.25 m (A = 2)), a quasi-periodic transition to quasi-single helicity (QSH) state has been observed. We have developed a two-dimensional electron temperature diagnostic system for thermal structure studies. The system consists of a soft X-ray (SXR) camera with two pin-holes for two-kinds of absorber foils, combined with a high-speed camera. We have succeeded in distinguishing *T*e image in QSH from that in multi-helicity (MH) RFP states. The most recent results using above techniques will be presented, together with discussion on possible reconstruction methods from 3-D imaging.

1. Introduction

The measurement of bremsstrahlung soft X-ray (SXR) radiation is one of the useful passive methods for diagnosing high-temperature plasmas, because contours of the SXR emissivity correspond to magnetic surfaces of the plasmas. Tangential SXR imaging has been applied to high-temperature toroidal plasma experiments for the study of pressure fluctuations either in the core or at the edge [1].

In the reversed field pinch (RFP), toroidal pitch of the equilibrium field is relatively short and fluctuation component resulting from internally global instabilities resonant forms three-dimensional helical (3-D) structure. Equilibrium analyses have shown that the innermost mode rational surface can be located away from the axis in a lower aspect ratio (A = R/a)RFP configuration, where R(a) is the major (minor) radius of the plasma column. Therefore, growth of a single mode to a higher amplitude can be expected in a low-A RFP than in medium- and high-A RFPs, which may allow easier access to quasi-single helicity (QSH) state, in which the internally resonant single tearing mode grows significantly larger than other modes.

In a low-A RFP machine RELAX [2], (R = 0.51)m/a = 0.25 m (A = 2)), a quasi-periodic transition to QSH state has been observed [3]. During the QSH state, the fluctuation power is concentrated to the dominant single m = 1 mode. We have developed SXR imaging diagnostics using multiple SXR cameras, which are constructed with microchannel plate (MCP) and fluorescent plate, for the identification of structures of dominant MHD instabilities in the QSH state in the RFP [4,5]. Detailed design of the SXR camera has been reported in ref.[6]. Moreover, we have constructed a fast successive SXR imaging system. As a preliminary experiment, we have taken SXR pin-hole pictures with time resolution of 10 micro sec, to identify time evolution of a simple helix structure in RELAX plasmas [7,8,9]. As a next step, we have applied a high-speed (10-microsecond time resolution) dual SXR imaging diagnostic system to take SXR images from tangential and vertical directions simultaneously to observe 3-D dynamic structures of the SXR emissivity. The magnetic field topology for the QSH RFP phase in RELAX plasmas are identified with obtained dual SXR images and results of external magnetic measurements [10]. Recently, we have developed a

two-dimensional electron temperature diagnostic system for thermal structure studies [11]. The system consists of a SXR camera with two pin-holes for two-kinds of absorber foils, combined with a high-speed camera. We have succeeded in distinguishing Te image in QSH from that in multi-helicity (MH) RFP states.

2. Experimental Set-up and Results

A schematic drawing of the two-color imaging system is illustrated in Fig. 1. We have installed the system to observe the 2D *T*e image from outboard side on the equatorial plane. The pinhole is located at 170 mm away from the plasma edge. Since the decay time of the fluorescence from phosphor plate is 0.5-microsecond, we can follow time evolution of the two SXR images on the phosphor plate by using a high-speed camera (Photoron FASTCAM SA-4) with 50 kfps.

Fig.1 Top view of two-color imaging system.

Figure 2 shows time evolution of plasma current *I*p, spectrum index *N*s and 2-D *T*e profile in shallow reversal discharge obtained from vertical port in RELAX with 50kfps of time resolution. We can recognize that tilted high temperature region is observed quasi-periodically. It is consistent with the result obtained with edge magnetic measurements.

Fig.2 Time evolution of *I*p, *N*s and 2-D *T*e profile in shallow reversal discharge.

The most recent results using two-color imaging technique will also be presented, together with discussion on possible reconstruction methods for 3-D imaging.

Acknowledgments

This work is supported by a Grant-in-Aid for Scientific Research (No.24740368) from the Ministry of Education, Culture, Sports and Technology, Japan, and by the National Institute for Fusion Science (NIFS) Collaborative Research Program (NIFS10KOAP024, NIFS13KLPP033).

References

- S. Ohdachi, et al., Plasma Fusion Res. 2 (2007) S1016.
- [2] S. Masamune, et al., J. Phys. Soc. Jpn. 76 (2007) 123501.
- [3] R. Ikezoe, et al., Plasma Fusion Res. **3** (2008) 029.
- [4] T. Onchi et al., Plasma Fusion Res. 2 (2007) S1063.
- [5] A. Sanpei, et al., Plasma Fusion Res. 2 (2007) S1064.
- [6] T. Onchi, et al., Rev. Sci. Inst., 81 (2010) 073502.
- [7] A. Sanpei, et al., Plasma Fusion Res., 6 (2011) 2406096.
- [8] A. Sanpei, et al., IEEE Transaction Plasma Science, 39 (2011) 2410.
- [9] A. Sanpei, et al., Plasma Fusion Res., 7 (2012) 2402052.
- [10]A. Sanpei, et al., JPS Conf. Proc. 1 (2014) 015027.
- [11]K. Nishimura, et al., Rev. Sci. Inst. **85** (2014) 033502.