Wide spectroscopic measurement of plasma using Small Helicon Device (SHD)

Eiko Tanaka, Hiroaki Fujisuka, Toshiki Nakagawa, Hiraku Iwaya, Hiroshi Akatsuka, Daisuke Kuwahara and Shunjiro Shinohara

Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 154-8588, Japan

Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan

1) 東京農工大学 〒154-8588 東京都小金井市中町2-24-16
2) 東京工業大学 〒152-8550 東京都目黒区大岡山2-12-1

In order to study an electrodeless plasma propulsion system using a high-density (~10^{13} \text{ cm}^{-3}) helicon plasma for a long-term space mission, we have developed a Small Helicon Device (SHD) to investigate characteristics of a small-diameter helicon plasma. Because of difficulties of measuring parameters such as an electron density and its temperature in a small-diameter plasma, we have been developing spectroscopic methods from a viewpoint of no perturbation to plasma compared to probe method. We have measured light emissions from the plasma by using a wide-range spectrometer Ocean Optics HR2000+. In this study, preliminary results of the spectroscopic measurement will be presented.

1. Introduction

An electric propulsion is a better system for a long term space mission than a chemical one because of its higher specific impulse. However, an operation lifetime of a conventional electric propulsion system is limited by a damage of electrodes contacting directly with a plasma. To solve this problem, we have been studying an electrodeless plasma propulsion system [1], using a developed Small Helicon Device (SHD) [2] to decrease weight and space of the thruster system. This small-diameter source will also contribute to industrial applications such as a coating of inner wall of a thin tube.

Plasma diagnostics is very important to characterize plasma performance. Although an electrostatic probe is a common method to measure plasma parameters, it disturbs a plasma flow in SHD because an inner diameter (i.d.) of a discharge tube is less than 20 mm. Not to disturb the plasma performance, here, spectroscopic methods are adopted. We have measured light emissions from plasmas by using a wide-range spectrometer, Ocean Optics HR2000+, to investigate plasma parameters such as an electron density.

2. Theory

If an electron temperature (written as T_e) is uniform for a non-saturated phase of the ionizing plasma, which satisfies in our plasma conditions, the intensities of Ar I (as $I_{Ar\text{ I}}$) and Ar II (as $I_{Ar\text{ II}}$) are expressed [3] as below,

$$I_{Ar\text{ I}} \propto n_e n_0,$$

and

$$I_{Ar\text{ II}} \propto n_e^2.$$

From Eq. (2), we can derive Eq. (3) as follows,

$$\sqrt{I_{Ar\text{II}} / n_e} = \text{const}.$$

(n_e: electron density, n_0: neural particle density)

Our final goal is to obtain n_e and T_e in an argon discharge by an intensity ratio method [4] between emission lines from neutral particle. As the first step, we have tried to estimate n_e by using Eq. (3).

3. Experimental Devices

![Fig.1. SHD](image)

Experiments have been carried out in SHD, as shown in Fig. 1. SHD consists of two parts; a quartz discharge tube and a vacuum chamber. Here, the inner diameter (i.d.) of the tube was changed: 20, 10 and 3 mm. A radio frequency (RF) antenna is a double-loop antenna, and the RF power is < 1,100 W with a frequency of 12 MHz. The pulsed discharge duration time is 100 ms with a duty of 1/10. Ar gas is fed with a flow rate from 0.7 sccm to 30 sccm (< 2 Pa in the source region). In the case of the electron
density measurement using a Langmuir probe, we assumed T_e of 3 eV.

Spectroscopic measurements were conducted, using a wide-range spectrometer of Ocean Optics HR2000+, whose specification is shown in Table I.

Table I. specification of spectrometer

<table>
<thead>
<tr>
<th>Detector</th>
<th>CCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength range [nm]</td>
<td>360–792</td>
</tr>
<tr>
<td>Blaze wavelength [nm]</td>
<td>500</td>
</tr>
<tr>
<td>Wavelength resolution [nm]</td>
<td>0.45</td>
</tr>
<tr>
<td>Integration time [s]</td>
<td>0.001–65</td>
</tr>
</tbody>
</table>

Intensities of spectra can be detected by a CCD. An optical fiber, P600-2-UV-VIS (core diameter: 600 μm, total length: 2 m), is connected to this spectrometer. A collimate lens 74-UV is connected to the edge of the optical fiber to adjust parallel sight.

Measurement points of the spectrometer and a Langmuir probe are located at $z = -60$ mm. Integration time of the spectrometer is 80 ms.

4. Experimental Results

\[\sqrt{I_{\text{Ar II}}/n_e} \] vs. RF power with 10 mm i.d.

\[\sqrt{I_{\text{Ar II}}/n_e} \] vs. RF power with 20 mm i.d.

$I_{\text{Ar II}}$ at a wavelength of 434.8 nm was measured by the spectrometer, and n_e was by a Langmuir probe. In Figs. 2 and 3, $\sqrt{I_{\text{Ar II}}/n_e}$ vs. RF power is plotted with 10 and 20 mm i.d. tubes, respectively. Here, the mass flow rate and the current of magnetic field coil (28 G/A) are shown.

Both $\sqrt{I_{\text{Ar II}}/n_e}$ in Figs. 2 and 3 tend to decrease as RF power increases. Considering that the cross section of Ar II line is a sensitive function of T_e, while the probe current is proportional to $\sqrt{T_e}$, in the region of < 400 W of RF power T_e was considered to be higher than the region above 400 W.

$\sqrt{I_{\text{Ar II}}/n_e}$ with 0 A tends to be lower than with 20 A, which indicates the higher T_e without the magnetic field than with the field. Therefore, T_e should be measured to be examined.

As to the data taken in 3 mm i.d. discharges, we are estimating n_e considering a solid angle of a view line and T_e.

5. Conclusion

We have measured light emissions from plasmas by using a wide-range spectrometer, where inner diameters of discharge tubes were 3, 10 and 20 mm.

In the case of a thin tube such as 3 mm i.d., it is difficult to use Langmuir probe. Therefore, we plan to determine the electron density by the use of $I_{\text{Ar II}}$ relation [Eq. (3)] obtained from 10 and 20 mm cases. Note that we need to calibrate the constant value of RHS of Eq. (3), since a solid angle with a line integral must be considered along with measurements of the electron temperature.

In the presentation, details of these results will be shown.

References