
Acceleration of plasma Particle-In-Cell simulations using GPU by hash
GPUを用いたプラズマPICシミュレーションのハッシュ法による高速化

Hiromi Matsunaga, Yasunori Mizuno, Hiroshi Inuzuka

松永寛海 水野保則 犬塚博

Shizuoka Universi ty
3 - 5 - 1 , Johoku, Nakaku, Hamamatsu 432 - 8561, Japan

静岡大学 〒432 - 8561 浜松市中区城北3 – 5 - 1

I t is commonly thought tha t i f the large scale plasma PIC simula tion genera l ly
processed wi th the supercomputer can be processed by GPU, t ime and monetary
cost i s great ly reducib le . In o rder to rea l ize i t , there i s two methods using sor t ing
and hash. However, i t r emains to be eluc ida ted whether the hash i s suitab le for the
large-sca le p lasma PIC s imula tion by GPU ra ther than sor t ing. To determine i t , we
compare hash wi th sor t ing, wi th the algor i thm wh ich imi tated a par t o f PIC. We
found tha t hash method is high speed than sor t ing in the la rge -scale plasma PIC
simula tion.

1. Introduction

Recently, computing power of GPU is

dramatically improved. Then, the

technology of applying GPU to large scale

plasma simulations, at tracts at tent ion.

 PIC is the typical technique of the particle

simulation of plasma . But, i ts amount of

operations is immense. Therefore, in a large

scale simulation with many particles, a

super computer is used in many cases.

 Thus, if i t can be calculated at high sp eed

by GPU, a large scale simulation will

become possible with a cheap and easy

computing unit l ike a common personal

computer. Then, the method of making PIC

calculate at high speed by GPU is studied all

over the world. We are studying the method

of accelerating PIC using hash.

2. Hash method

PIC is the technique of dividing space in a

cell and representing the charged particle in

a cell as an electric charge of a cell . By the

random access which is dependent on

particle distribution when i t is going to

parallel ize this processing simply, the

problem that memory access speed is

dependent on particle distribution arises.

We try to solve this problem using hash.

The structure of hash is the mechanism of

changing a certain keyword into the hash

value which expresses the keyword by a

hash function, as shown in Fig.1.

Fig.1 Structure of hash

That is, the same hash value is given to the

particles which exist in the cell of a certain

range, the particles of the same hash value

are stored in 128 bytes of array, the array is

connected by a chained l ist , and each

chained l ist is processed in parallel . In this

way, the dependence to the particle

distribution of memory access is avoidable

by narrowing the range of the cell which a

parallel processing uni t treats.

3. Comparison of hash and sorting

method

There is an algorithm using sorting as a

method of solving the problem of the

memory access in PIC [1]. We examined

disadvantages of the algorithm using hash

and sorting in large scale operation, and the

high speed technique by hash [2]. As sorting

for comparison, we use bitonic sort suitable

for parallel operation [3]. As an operation

model to examine, we use the algorithm

21PA-037

which makes a random sequence an

ascending order, and examine the

calculation t ime. In this case, the length of

sequence and the range of the random

number are equivalent to the number of

part icles and the number of cells in PIC.

Fig.2 shows the relation between the length

of a sequence and the calculation t ime.

Fig.3 shows the relation between the range

of the random number and the calculation

t ime. Since we assume large scale operation ,

we set the length of a sequence of nu mber to

22 4 which is the maximum of this

environment.

10
4

10
610

0

10
2

10
4

C
o

m
p

u
ta

ti
o

n
a

l
ti
m

e
 T

 [
m

s
]

Size of sequence N [pcs]

Hash method

Bitonic sort

Fig.2 Effect of size of sequence .

10
4

10
610

0

10
2

10
4

C
o

m
p

u
ta

ti
o

n
 t
im

e
 T

 [
m

s
]

Random range R [pcs]

Hash method

Bitonic sort

Fig.3 Effect of size of random range.

Fig.2 shows that sort ing is more high speed

than hash when the length of a sequence is

short , and that hash is more high speed than

sorting when the length of a sequence is

long. This shows that hash is superior to

sorting in large scale operation. Fig.3 also

shows same, because hash is more high

speed than sorting in Fig.3 whose length of

a sequence is the maximum.

In a plasma simulation, the number of cells

can be called parameter which can be set

comparatively freely as compared with the

number of part icles. Therefore, when

accelerating hash, the range of a random

number corresponding to the number of

cells is important value. If the range of a

random number is too wide and i t is too

narrow, computing speed downs. Fig.4 is

taken up about the variation of the

computational speed.

10
4

10
610

0

10
2

10
4

C
o

m
p

u
ta

ti
o

n
 t
im

e
 T

 [
m

s
]

Random range R [pcs]

Hash total
Hash's hash part
Hash's sort part

Bitonic sort

Fig.4 Effect of random range .

When rearranging a sequence by hash, the

algorithm consists of a portion which gives

a hash value to a sequence , and a portion

which rearranges a sequence of numbers

based on a hash value. Fig.4. shows that the

portion which gives a hash value occupies a

great portion of computational t ime. It

happens easily that this portion is not

desirable in respect of memory access

compared with the portion which rearranges

a sequence of numbers. The valley o f this

computation t ime is also depended on

memory access.

References

[1]C. K. Birdsall , et al . : “Plasma physics via
computer simulation”, McGraw -Hill Book
Company, 1985.

[2]K. Sawamoto et al . : “Efficient algorithm
of plasma PIC simulation for GPU”,
Abstract of US-Japan JIFT Workshop
2011, 2011.

[3]K. Okada et al . : “A guide to
CUDA-accelerated GPU computing
architecture and programming”,
Shuwasystem, 2010.

