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I. INTRODUCTION

The high temperature ions are produced in the an-
chor cell by using ion cyclotron radio frequency (ICRF)
heating to control outbreak of the flute instability in
GAMMA10. In addition, it is revealed that the flute
instability surely occurs and cannot maintain plasma
experimentally when the quantity of high temperature
ions decreases. By the way, electron cyclotron reso-
nance discharge cleaning (ECR-DC) is performed for
the purpose of cleaning the wall before the main ex-
periment in GAMMA10 which generates low density
plasma there. Though there is no high temperature
ions in the anchor cell as for this low density plasma,
it is stable in GAMMA10. The purpose of this study
is to clarify the stability in a low density domain pre-
dicted by a linear theory using particle simulation.

II. LINEAR THEORY OF THE FLUTE
INSTABILITY
　 In the linear theory, the dispersion equation is ob-
tained as following equation.[1]
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Here, ψ, ky, g, ωci, ωpi, and ϵ⊥ are potential, wave num-
ber, centrifugal acceleration, ion cyclotron frequency,
ion plasma frequency, and plasma dielectric response
function (ϵ⊥ = 1+(ωpi/ωci)

2). The linear growth rate
of a flute instability is calculated by solving this equa-
tion. However it does not agree with simulation in the
low density domain. The flute mode is predicted to
be stable in such domain in the linear theory, but it
was found not stable in simulation. So Eq.(1) may be
not suitable and it seems impertinent treatment of an
approximation.
　 In Eq.(1), ω ≫ kyg/ωci is assumed as additional
approximation. This means that the flute instability
is significantly slower phenomena than ion cyclotron
frequency. Thereby, Eq.(1) should reduces to the fol-

lowing equation.
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Linear growth rates derived from Eq.(2) don’t become
0 and show good agreement with simulation.
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Figure 1: Linear growth rates of the flute instability
when density distribution is step function. The red
circles are obtained from Eq.(2).

Figure 1 plots the linear growth rates of the flute
instability in case of kyg/ω

2
ci = 10−4, which was ob-

tained by solving Eq.(2) in the range of 0 ≤ kyx ≤ 4π
with the boundary condition that ψ = 0 at kyx = 0
and kyx = 4π. The vertical axis γ in Fig.1 is the linear
growth rate of the flute instability, i.e., ω = ωr + iγ,
where i is the imaginary unit. If the density profile
is step function n(x) = n0[1 − θ(x)], the dispersion
relation becomes[2] ω2 = −|ky|g/(2ω2

ci/ω
2
pi + 1) which

is plotted in Fig.1. Figure 1 indicates that Eq.(2) in-
cludes this well-known dispersion relation, and linear
growth rates become smaller in the low density do-
main.
　 On the other hand, in this paper,

n(x) = −a tanh(x− Lx/2

ah
) + b

is adopted as a density distribution (Fig.2). Here, a,b
are constant, Lx(= 256) is system size in x-direction,



and ah is characteristic length.

III. SIMULATION RESULTS
　 This paper uses the uniform gravitational field g =
gêx shown in Fig.2, where êx is the unit vector along x-
axis. The uniform external magnetic field B = Bêz is
applied along z-axis. Ions and electrons are distributed
as hyperbolic tangent function for x direction at t = 0.
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Figure 2: Initial density distribution n(x) =

−a tanh(x−Lx/2
ah

) + b, gravitational acceleration vector
g, and external magnetic field.

The code uses two-dimensional 256 × 128 spatial
meshes in x− y and three velocity components vx, vy,
and vz. (9 × 256 × 128) ions and electrons each are
used in the simulation.
　The flute instability is observed in the simulation be-
cause the geometry Fig.2 is unstable to the flute modes.
Figure 3 plots the linear growth rates of the flute insta-
bility with (1,1) mode measured in the linearly growing
phase of the simulation. The solid circles in Fig.3 are
simulation results. The solid line is the theoretically
calculated linear growth rate Eq.(2). The simulation
parameters that mi/me = 1830, kyg/ω

2
ci = 10−4, and

the solid circles in Fig.3 were obtained by changing the
electron cyclotron frequency ωce/ωpe.
　 The agreement between theory and simulation is
good in Fig.3. It is not good in the low density domain
if Eq.(1) was used to calculate linear growth rates be-
cause it becomes 0 at ωci/ωpi ∼ 65. Thus, it seems
that Eq.(1) in the Ref.1 is not suitable, and Eq.(2) is
better linear dispersion equation than Eq.(1).
　 The time evolutions of field energy |E|2 of (1,1)
mode are plotted in Fig.4. Like Fig.3, it is found that

linear growth rate of the flute instability becomes small
if ωci/ωpi becomes large.

0 10 20 30 40 50 60 70

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

simulation results

linear theory Eq.(2)

linear theory Eq.(1)

Figure 3: Linear growth rates of the flute instability
as a function ωci/ωpi means reciprocal function of the
density.
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Figure 4: Time evolution of field energy of (1,1) mode.

IV.CONCLUSIONS
　 The flute instability in the geometry of Fig.2 were
investigated by using electrostatic implicit PIC code.
The linear growth rates of the flute instability in the
particle simulation agree well with the theoretical lin-
ear growth rate Eq.(2). It seems that Eq.(1) in the
Ref.1 is not suitable for investigating the flute insta-
bility in the low density plasma.
　 It is found that the flute instability has a tendency
of stabilization in the low density plasma. Although it
is not completely stabilized, the linear growth rate of
the flute instability is very small compared with high
density plasma.
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