1. Introduction

The temperature of neutral species in a plasma (T_g) is one of the important parameters in plasma science and technology, but so far, the influence of T_g on plasma physics and chemistry in non-equilibrium plasmas has not been investigated in detail yet. On the other hand, cryoplasmas are a special type of non-equilibrium plasmas whose T_g can be controlled between room temperature and a few Kelvins [1,2]. Cryoplasmas have the potential for various applications in new plasma processes such as the treatment of very-heat-sensitive and frozen materials. For example, plasma damage to nano-porous low-k materials could be suppressed owing to the low kinetic energy of radical species [3]. Since the T_g of cryoplasmas span a wide range of almost two orders of magnitude, the effect of T_g on various phenomena is expected to be emphasized in these cryoplasmas. In this study, to investigate the dependency of the reaction dynamics on T_g in the cryoplasmas, we developed a new 0D reaction model in a mixture of helium (He) and nitrogen (N$_2$). Also we investigated the cryoplasmas by time-resolved laser absorption spectroscopy (LAS) to measure the density of the metastable helium atom (Hem) and the reaction dynamics related to Hem.

2. 0D reaction model considering T_g

For the investigation of the plasma chemistry in the cryoplasmas, we developed a zero-dimensional (0D) time-dependent global model with a new reaction set in a He/N$_2$ system [4]. We considered 10 species, namely electron, He atom, He metastable species (Hem, Hem*), He ions (He$^+$, He$^{+*}$, He$_3^+$), N$_2$, and nitrogen ions (N$_2^+$, N$_2^{+*}$), and 19 reactions. The most distinguishing feature of the model was that the dependencies of the reaction rate constants on T_g in many reactions were taken into account and almost all values were collected from previous studies (see Ref. [4]). In this study, we

Figure 1. The reactions included in our 0D model and the calculation results of its reaction rate at (a) 5 K, (b) 40 K, and (c) 300 K. The reaction numbers are the same as in Ref. [4]. The thickness of the arrows indicates the magnitude of the reaction rate (thick: $> 10^9$ cm$^{-3}$ s$^{-1}$, thin: $< 10^6$ cm$^{-3}$ s$^{-1}$, medium: between 10^6 and 10^9 cm$^{-3}$ s$^{-1}$). The gray arrows indicate the reactions included He and N$_2$, while the black arrows indicate the reactions included only He.
introduce the results of the model calculation in He with N$_2$ (0.01%) at a total number density of 2.4 × 1019 cm$^{-3}$, which is almost equal to that of ambient air.

Figure 1 shows the reactions related to He in our model (the reaction numbers are the same as in Ref. [4]) with arrows whose thickness depends on its reaction rate, which indicates the reaction frequency per 1 cm3 and per microsecond, at 5, 40, and 300 K. At 5 K, since pure He was obtained due to solidification in spite of the mixture with N$_2$, the reactions related to N$_2$ do not occur. As shown in Fig. 1, the dominant reactions varied with T_g.

Concerning the quench reactions of Hem, Fig. 2 shows the ratio of three quench reactions of Hem in our model at each temperature: the mutual collision of Hem (2^{nd}-order reaction, R4), the Penning ionization reaction with N$_2$ (1^{st}-order reaction, R15), and the three-body reaction with two He atoms (1^{st}-order reaction, R6). The dominant quench reaction drastically changed between 30 and 40 K due to the change of the ratio of N$_2$ because of the limitation of the sublimation pressure of N$_2$ at cryogenic temperatures. Above 40 K, the dominant quench reaction varied from a Penning reaction (R15) to the three-body reaction with two He atoms (R6) with increasing T_g. This temperature dependency was mainly due to the strong dependency of the reaction rate constant of the three-body reaction (R6) on T_g. In Fig. 2, the dominant quench reaction of Hem changed with T_g even near and above room temperature. This implies that the importance of T_g on a plasma chemistry in high-density media near and above room temperature. The results of the calculation also showed that the lifetime of Hem at 5 K was much longer than that at 300 K because neither the reactions of R6 nor R15 work well at 5 K.

3. Laser absorption spectroscopy

In order to confirm the validity of the calculation results, LAS measurements were conducted on a dielectric barrier discharge in He with air impurity at the same number density. The plasmas were generated using stainless steel electrodes (5 mm × 10 mm) with polyimide barriers (thickness: 0.125 mm) separated by a gap distance of 0.5 mm. The burst of the AC voltage (amplitude: ~750 V) of 10 kHz was applied (ON/OFF: 50 ms/50 ms). The laser wavelength was 1083 nm which corresponds to the energy gap between Hem(21S) and He2(23P).

The results showed that the lifetime of Hem at 14 K was more than 100 times longer than that at 300 K. Also, the decay curve at 14, 40, and 300 K implied that the dominant quench process of Hem at 40 K and 300 K was nearly a 1^{st}-order reaction, while it was nearly a 2^{nd}-order reaction at 14 K.

4. Conclusion

The 0D reaction model could reproduce the long lifetime of Hem and the dependence of the quench reactions of Hem on T_g. The results of the model calculation suggested that the discharge mechanism generated in He/N$_2$ depends strongly on T_g at cryogenic temperature and also near and above room temperature.

Acknowledgments

This work was supported financially in part by a Grant-in-Aid for Scientific Research on Innovative Areas (Frontier Science of Interactions between Plasmas and Nano-interfaces, No. 21110002) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by Grants-in-Aid for Scientific Research (B) (No. 21360356) and (A) (No. 24246120), and by a Grant-in-Aid for JSPS Fellows (No. 13J06697) from Japan Society for the Promotion of Science.

References