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Ion acoustic soliton with finite vorticity
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We show that the series of Kadomtsev-Petviashvili equations (including higher order series) describe only
“zero-vorticity” motion of ion acoustic waves. We derive a new system of equations that has a finite vorticity.

1. Introduction

While there are a lot of works on the ion acoustic
solitons, they have not paid attention to the “vor-
tex” of the wave field. In fact, the Korteweg-de
Vries (KdV) equation [1] considers a spatially one-
dimensional system, so the fields do not have a free-
dom to create a vorticity.

The two-dimensional (or three-dimensional) gen-
eralization of the KdV equation is the Kadomtsev-
Petviashvili (KP) equation [2, 3], which, however,
is set to eliminate vorticity; in the present work we
show that the series of higher order KP equations
are all vortex free.

This observation motivates us to elucidate how
the vortex-free solitons are special in a wider phase
space, and to formulate and analyze a generalized
system that has a finite vorticity.

2. Hamiltonian system and Casimir invariant
A generalized Hamiltonian system [4] is written as

deu = J(u)oy H(u), (D)

where u is the state vector, J is the Poisson opera-
tor, H is the Hamiltonian, and d,, is the functional
derivative. Poisson bracket is defined as {F, G} =
J(3,F)(J3,G)dx, and the time evolution of a
functional F(u) is written as 0, F = {F, H}.

When Poisson operator has non-trivial kernel, the
system is called non-canonical. In a non-canonical
system, a functional C(u) such that 79,C = 0 is
conserved, and called Casimir invariant. A Casimir
invariant foliates the phase space, hence the dynam-
ics is constrained on the “Casimir leaf”.

Ion acoustic waves are governed by the continu-
ity equation, the equation of motion, and Poisson
equation:

an+V-(nu) =0, (2a)

diu+ (u-Vu+Ve =0,
n=e?—Agp.

(2b)
(20)

Here, n is the number density, u is the velocity, and
¢ is the electrostatic potential (all variables are nor-
malized). These equations are written in generalized
Hamiltonian form (1) withu = (n, u) T and follow-
ing Poisson operator and Hamiltonian [5]:

0 _v.
J = (—V —n"H(V x u) x ) ’ 3)
H = / (%nluI2 +N(n)) dx, 4)

where N'(n) = e?(¢p — 1) + (V¢)?/2 + 1.

This system is non-canonical, and two Casimir
invariants are known. One is total number, and the
other is expressed with vorticity @ = V x u. If the
spatial dimension is three, the helicity [u -  dx
is Casimir invariant; and if the spatial dimension
is two, the generalized enstrophy [ nf(w/n)dx is
Casimir invariant ( f is an arbitrary function).

Next, suppose that vorticity is zero. This condi-
tion makes above Casimir invariants zero (trivial-
ized). Furthermore, the structure of Poisson oper-
ator (3) is changed, and the functional f u-cdx (c
is an arbitrary constant vector) becomes Casimir in-
variant.

In this way, fluids with zero-vorticity constrained
on “singular” Casimir leaf [6]. However, most of
studies on soliton have not focused on this point. In
this work, generalization of the KP equation to finite
vorticity is considered.

3. KP equation

At first, we see how vorticity vanishes in the KP
equation. KP equation is derived by reductive per-
turbation method. Introducing a small parameter
€, dependent variables are expanded as n = 1 +
eznl + €4n2 + e, Uy = 62u1 + e4u2 + .-,



Uy, = €?v; + €*vy, + ---; and independent vari-
ables as § = e(x —1t), n = €2y, © = €3t. Then,
we obtain n; = u; = ¢; from e3-order terms of
equation (2), dgvy = 0dy¢1 from e*-order, and the
KP equation from e°-order:
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where ¢; is simply written as ¢.

The dynamics governed by the KP equation has
no vorticity: @y = 0gv; — dyu1 = Ipo1 —
dp¢1 = 0. Furthermore, higher order vorticity
w2 = 0gvy — dpuy, can be calculated from €%-order
terms of equation (2), becomes zero. Similarly, all
order vorticities become zero. While the KP equa-
tion is spatially two-dimensional, generalization to
three-dimension is easy. Variables are expanded as
{=€®z,u; = 3wy +€>wy +---, and the last term
of equation (5) is changed as 3; — A := 3} + 97
In the three-dimensional case, however, all vortic-
ities vanish too. Since the basic equations (2) can
have finite vorticity, we should see how the reduc-
tive perturbation method kills vorticity.

First of all, orders of vorticity and compressibility
V - u should be compared. Leading order of vortic-
ity (9gv1 — d,u1) is €, and that of compressibility
(Jguy) is €3. This is because the reductive perturba-
tion method makes compressibility and dispersion
balance, and soliton appears [7].

In addition, we see the effect of vorticity in the
equation of motion (2b). The convection term is
rewritten as (u-V)u = —u x @ + V(|u|?/2), so the
effect of vorticity appears only in the first term. The
leading order of this term (u;w;) is €®, hence the
effect has higher order than the KP equation. Thus,
we can say that the ordering pushes the effect of vor-
ticity higher (smaller) than the governing equation.
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4. Generalization to a finite vorticity system
Now we introduce finite vorticity in the KP equa-
tion. From the previous section, we can say that the
problem is that the order of vorticity is low. Since
a soliton appears when compressibility and disper-
sion are balanced, we should not make the order of
vorticity higher than that of compressibility. Thus
the order of vorticity should be €3. With this order,
the vorticity effect # x @ has €”-order, same as the
KP equation.

e3-order vorticity is realized by adding €!-order
velocities vg and wy to u, and u,. For simplicity,
we suppose Vo = d¢ ¥, wo = —d, V¥, and dgyy = 0.
From the e€*-order of equation (2b), we obtain the

equations of motion of vy and wy. They are equiva-
lent to two-dimensional Euler vorticity equation:

d
E(Aﬂﬁ) +[ALy. ¥] =0, (6)

where [f, g] = 0, f0:g — 9¢ f9yg. From the €°-
order of equation (2), we obtain modified three-
dimensional KP equation:

d (3¢ ¢ 1033
i (T + 5 + 3350 +10.91)

+ %Aiqﬁ =0. (7

We call the set of equations (6) and (7) Kadomtsev-
Petviashvili-Yoshida (KPY) equations.

5. Summary

It is showed that there are no vorticity in the (two-
and three-dimensional) KP equation, hence the dy-
namics is constrained on singular Casimir leaf. In
order to put the dynamics on non-singular (vortex)
Casimir leaf, the new (lower) order velocities are
introduced. The resulting equations are the KPY
equations (6)—(7), the first is the Euler vorticity
equation and the second is the modified KP equa-
tion. Vorticity, compressibility, and dispersion are
balanced in this system. Results of numerical and
analytical studies will be presented in the confer-
ence.
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